Новая школа - Образовательный портал

Окислительно-восстановительные реакции с участием органических веществ. Реакции окисления органических веществ Окисление муравьиной кислоты перманганатом калия уравнение реакции

Данный материал может быть сложен в освоении при самостоятельном обучении, ввиду большого объема информации, многих нюансов, всевозможных НО и ЕСЛИ. Читать внимательно!

О чем именно пойдет речь?

Помимо полного окисления (горения), для некоторых классов органических соединений характерны реакции неполного окисления, при этом они превращаются в другие классы.

Существуют специфические окислители для каждых классов: CuO(для спиртов),Cu(OH) 2 и OH (для альдегидов) и другие.

Но есть два классических окислителя, которые, если так можно выразиться, универсальные для многих классов.

Это перманганат калия – KMnO 4 . И бихромат (дихромат) калия – K 2 Cr 2 O 7 . Эти вещества являются сильными окислителями за счет марганца в степени окисления +7, и хрома в степени окисления +6, соответственно.

Реакции с этими окислителями встречаются довольно часто, однако нигде нет целостного руководства, по какому принципу выбирать продукты таких реакций.

На практике действует очень много факторов, влияющих на ход реакции (температура, среда, концентрация реагентов и т.д.). Часто получается смесь продуктов. Поэтому предугадать продукт, который образуется практически невозможно.

А для ЕГЭ это не годится: там нельзя написать «может быть или так, или вот так, или иначе, или смесь продуктов». Там нужна конкретика.

Составители заданий вложили определенную логику, определенный принцип по которому следует писать определенный продукт. К сожалению, они ни с кем не поделились.

Данный вопрос в большинстве пособий довольно скользко обходится стороной: в качестве примера приведено две-три реакции.

Представляю в этой статье, то, что можно назвать результатами исследования-анализа заданий ЕГЭ. Логика и принципы составления реакций окисления перманганатом и дихроматом разгадана довольно с высокой точностью (в соответствии со стандартами ЕГЭ). Обо всем по порядку.

Определение степени окисления .

Первое, когда имеем дело с окислительно-восстановительными реакциями, всегда есть окислитель и восстановитель.

Окислителем является марганец в перманганате или хром в дихромате, восстановителем – атомы в органике (а именно – атомы углерода).

Мало определить продукты, реакция должна быть уравнена. Для уравнивания традиционно используют метод электронного баланса. Для применения этого метода необходимо определить степени окисления восстановителей и окислителей до и после реакции.

У неорганических веществ степени окисления умеем с 9 класса:

А вот в органике, наверное, в 9 классе не определяли. Поэтому прежде, чем научиться писать ОВР в органической химии, нужно научиться определять степень окисления углерода в органических веществах. Делается это немного по-другому, иначе чем в неорганической химии.

У углерода максимальная степень окисления +4, минимальная -4. И он может проявлять любую степень окисления этого промежутка: -4, -3, -2, -1, 0, +1, +2, +3, +4.

Для начала нужно вспомнить, что такое степень окисления.

Степень окисления – это условный заряд, возникающий на атоме, при допущении, что электронные пары смещаются полностью в сторону более электроотрицательного атома.

Поэтому степень окисления определяется числом смещенных электронных пар: если она смещается к данному атому, то он приобретает избыточный минус(-) заряд, если от атома, то он приобретает избыточный плюс(+) заряд. В принципе это вся теория, которую нужно знать, для определения степени окисления атома углерода.

Для определения степени окисления конкретного атому углерода в соединении нам нужно рассмотреть КАЖДУЮ его связь и посмотреть в какую сторону будет смещаться электронная пара и какой избыточный заряд (+ или -) будет от этого возникать на атоме углерода.

Разберем конкретные примеры:

У углерода три связи с водородом . Углерод и водород – кто более электроотрицателен? Углерод, значит, по этим трем связям электронная пара будет смещаться в сторону углерода. Углерод забирает у каждого водорода по одному отрицательному заряду: получается -3

Четвертая связь с хлором. Углерод и хлор – кто более электроотрицателен? Хлор, значит, по этой связи электронная пара будет смещаться в сторону хлора. У углерода появляется один положительный заряд +1.

Затем, нужно просто сложить: -3 + 1 = -2. Степень окисления этого атома углерода: -2.

Определим степень окисления каждого атома углерода:

У углерода три связи с водородом. Углерод и водород – кто более электроотрицателен? Углерод, значит, по этим трем связям электронная пара будет смещаться в сторону углерода. Углерод забирает у каждого водорода по одному отрицательному заряду: получается -3

И еще одна связь с другим углеродом. Углерод и другой углерод – их электроотрицательности равны, поэтому смещения электронной пары не происходит (связь не полярная).

У этого атома две связи с одним атомом кислорода, и еще одна связь с другим атомом кислорода (в составе группы OH). Более электроотрицательные атомы кислорода по трем связям оттягивают на себя электронную пару у углерода, у углерода появляется заряд +3.

Четвертой связью углерод связан с другим углеродом, как мы уже говорили, по этой связи электронная пара не смещается.

Двумя связями углерод связан с атомами водорода. Углерод, как более электроотрицательный оттягивает себе по одной паре электронов по каждой связи с водородом, приобретает заряд -2.

Двойной связью углерода связан с атомом кислорода. Более электроотрицательный кислород оттягивает на себя по каждой связи одну электронную пару. Вместе получается у углерода оттягивается две электронные пары. Углерод приобретает заряд +2.

Вместе получается +2 -2 = 0.

Определим степень окисления вот этого атома углерода:

Тройная связь с более электроотрицательным азотом – дает углероду заряд +3, по связи с углеродом смещения электронной пары не происходит.

Окисление перманганатом.

Что будет с перманаганатом?

Окислительно-восстановительная реакция с перманганатом может протекать в разных средах (нейтральная, щелочная, кислая). И от среды зависит, как именно будет протекать реакция, и какие при этом образуются продукты.

Поэтому может идти по трем направлениям:

Перманганат, являясь окислителем, восстанавливается. Вот продукты его восстановления:

  1. Кислая среда .

Среду подкисляют серной кислотой (H 2 SO 4). Марганец восстанавливается до степени окисления +2. И продукты восстановления будут:

KMnO 4 + H 2 SO 4 → MnSO 4 + K 2 SO 4 + H 2 O

  1. Щелочная среда .

Для создания щелочной среды добавляют довольно концентрированную щелочь (KOH). Марганец восстанавливается до степени окисления +6. Продукты восстановления

KMnO 4 + KOH → K 2 MnO 4 + H 2 O

  1. Нейтральная среда (и слабощелочная ).

В нейтральной среде кроме перманганата в реакцию так же вступает вода (которую мы пишем в левой части уравнения), марганец будет восстанавливаться до +4 (MnO 2), продукты восстановления будут:

KMnO 4 + H 2 O → MnO 2 + KOH

А в слабощелочной среде (в присутствии раствора KOH невысокой концентрации):

KMnO 4 + KOH → MnO 2 + H 2 O

Что будет с органикой?

Первое, что нужно усвоить – все начинается со спирта! Это начальная стадия окисления. Окислению подвергается тот углерод, к которому присоединена гидроксильная группа.

При окислении атом углерода «приобретает» связь с кислородом. Поэтому, когда записывают схему реакции окисления, над стрелкой пишут [O]:

Первичный спирт окисляется сначала до альдегида, потом до карбоновой кислоты:

Окисление вторичного спирта обрывается на второй стадии. Так как углерод находится посередке, образуется кетон, а не альдегид (атом углерода в кетонной группе уже физически не может образовать связь с гидроксильной группой):

Кетоны , третичные спирты и карбоновые кислоты дальше уже не окисляются:

Процесс окисления ступенчатый – пока есть куда окисляться и есть для этого все условия – реакция идет. Все заканчивается продуктом, который в данных условиях не окисляется: третичный спирт, кетон или кислота.

Стоит отметить стадии окисления метанола. Вначале он окисляется до соответствующего альдегида, затем до соответствующей кислоты:

Особенностью этого продукта (муравьиной кислоты) является то, что углерод в карбоксильной группе связан с водородом, и если приглядеться, то можно заметить, что это ни что иное как альдегидная группа:

А альдегидная группа, как мы выяснили ранее, окисляется дальше до карбоксильной:

Узнали полученное вещество? Его брутто-формула H 2 CO 3 . Это угольная кислота, которая распадается на углекислый газ и воду:

H 2 CO 3 → H 2 O + CO 2

Поэтому метанол, муравьиный альдегид и муравьиная кислота (за счет альдегидной группы) окисляются до углекислого газа.

Мягкое окисление.

Мягкое окисление – это окисление без сильного нагревания в нейтральной или слабощелочной среде (над реакцией пишут 0 ° или 20 °) .

Важно помнить, что спирты в мягких условиях не окисляются. Поэтому если они образуются, то на них окисление и останавливается. Какие вещества будут вступать в реакцию мягкого окисления?

  1. Содержащие двойную связь C=C (Реакция Вагнера).

При этом π-связь разрывается и на освободившиеся связи «садится» по гидроксильной группе. Получается двухатомный спирт:

Напишем реакцию мягкого окисления этилена (этена). Запишем исходные вещества и предскажем продукты. При этом H 2 O и КOH пока не пишем: они могут оказаться как в правой части уравнения, так и в левой. И сразу определяем степени окисления участвующих в ОВР веществ:

Составим электронный баланс (имеем ввиду, что восстановителя два – два атома углерода, окисляются они по-отдельности):

Расставим коэффициенты:

В конце надо дописать недостающие продукты (H 2 O и KOH). Справа не хватает калия – значит щелочь будет справа. Ставим коэффициент перед ней. Слева не хватает водорода, значит, вода слева. Ставим перед ней коэффициент:

Проделаем то же самое с пропиленом (пропеном):

Часто подсовывают циклоалкен. Пусть он вас не смутит. Это обычный углеводород с двойной связью:

Где бы не была эта двойная связь, окисление будет идти одинаково:

  1. Содержащие альдегидную группу .

Альдегидная группа более реакционноспособная (легче вступает в реакции), чем спиртовая. Поэтому альдегидная будет окисляться. До кислоты:

Рассмотрим на примере ацетальдегида (этаналя). Запишем реагенты и продукты и расставим степени окисления. Составим баланс и поставим коэффициенты перед восстановителем и окислителем:

В нейтральной среде и слабощелочной ход реакции будет немного разным.

В нейтральной среде, как мы помним при этом в левой части уравнения пишем воду, а в правой части уравнения щелочь (образуется в ходе реакции):

При этом в одной смеси оказываются рядом кислота и щелочь. Происходит нейтрализация.

Они не могут существовать рядом и реагируют, образуется соль:

При этом если мы посмотрим на коэффициенты в уравнении, то поймем, что кислоты 3 моля, а щелочи 2 моля. 2 моля щелочи может нейтрализовать только 2 моля кислоты (образуется 2 моля соли). А один моль кислоты остается. Поэтому конечное уравнение будет таким:

В слабощелочной среде щелочь в избытке – ее добавляют до реакции, поэтому нейтрализуется вся кислота:

Похожая ситуация возникает при окислении метаналя. Он, как мы помним, окисляется до углекислого газа:

Нужно иметь ввиду, что оксид углерода (IV) CO 2 кислотный. И будет реагировать с щелочью. И так как угольная кислота двухосновная, может образовываться как кислая соль, так и средняя. Это зависит от соотношения между щелочью и углекислым газом:

Если щелочь относится к углекислому газу как 2:1 , то будет средняя соль:

Или же щелочи может быть значительно больше (больше, чем в два раза). Если ее больше чем в два раза, то будет оставаться остаток щелочи:

3KOH + CO 2 → K 2 CO 3 + H 2 O + KOH

Такое будет возникать в щелочной среде (где щелочи избыток, так как она добавлена в реакционную смесь до реакции) или в нейтральной среде, когда щелочи образуется много.

Но если щелочь относится к углекислому газу как 1:1 , то будет кислая соль:

KOH + CO 2 → KHCO 3

Если углекислого газа больше, чем нужно, то он остается в избытке:

KOH + 2CO 2 → KHCO 3 + CO 2

Такое будет в нейтральной среде, если щелочи образуется мало.

Запишем исходные вещества, продукты, составим баланс, проставим степени окисления перед окислителем, восстановителем и продуктами, которые из них образуются:

В нейтральной среде справа будет образовываться щелочь (4KOH):

Теперь надо понять, что же будет образовываться при взаимодействии трех молей CO 2 и четырех молей щелочи.

3CO 2 + 4KOH → 3KHCO 3 + KOH

KHCO 3 + KOH → K 2 CO 3 + H 2 O

Поэтому получается вот так:

3CO 2 + 4KOH → 2KHCO 3 + K 2 CO 3 + H 2 O

Поэтому в правой части уравнения пишем два моля гидрокарбоната и один моль карбоната :

А в слабощелочной среде таких заморочек нет: из-за того, что щелочи избыток, будет образовываться средняя соль:

То же самое будет при окислении альдегида щавелевой кислоты:

Как и в предыдущем примере, образуется двухосновная кислота, и по уравнению должно получиться 4 моля щелочи (так как 4 моля перманганата).

В нейтральной среде опять-таки, всей щелочи не хватит на полную нейтрализацию всей кислоты.

Три моля щелочи уходит на образование кислой соли, один моль щелочи остается:

3HOOC–COOH + 4KOH → 3KOOC–COOH + KOH

И этот один моль щелочи уходит на взаимодействие с одним молем кислой соли:

KOOC–COOH + KOH → KOOC–COOK + H 2 O

Получается вот так:

3HOOC–COOH + 4KOH → 2KOOC–COOH + KOOC–COOK + H 2 O

Конечное уравнение:

В слабощелочной среде образуется средняя соль из-за избытка щелочи:

  1. Содержащие тройную связь C C .

Помните, что было при мягком окислении соединений с двойной связью? Если не помните, то пролистайте назад – вспомните.

π-связь рвется, на атомы углерода прикрепляется по гидроксильной группе. Здесь тот же принцип. Только стоит помнить, что в тройной связи есть две π-связи. Сначала это происходит по первой π-связи:

Потом по другой π-связи:

Структура, в которой у одного атома углерода две гидроксильные группы, крайне неустойчива. Когда в химии что-то не устойчиво, оно стремится, чтобы что-то «отвалилось». Отваливается вода, вот так:

Получается карбонильная группа.

Рассмотрим примеры:

Этин (ацетилен). Рассмотрим стадии окисления этого вещества:

Отщепление воды:

Как и в предыдущем примере, в одной реакционной смеси кислота и щелочь. Происходит нейтрализация – образуется соль. Как видно по коэффициенту перед перманганатом щелочи будет 8 молей, то есть вполне хватает для нейтрализации кислоты. Конечное уравнение:

Рассмотрим окисление бутина-2:

Отщепление воды:

Здесь кислоты не образуется, поэтому морочиться над нейтрализацией не надо.

Уравнение реакции:

Эти различия (между окислением углерода с краю и посередине цепи) ярко демонстрируются на примере пентина:

Отщепление воды:

Получается вещество интересного строения:

Альдегидная группа продолжает окисляться:

Запишем исходные вещества, продукты, определим степени окисления, составим баланс, проставим коэффициенты перед окислителем и восстановителем:

Щелочи должно образовываться 2 моля (так как коэффициент перед перманганатом 2), следовательно, вся кислота нейтрализуется:

Жесткое окисление .

Жесткое окисление – это окисление в кислой , сильнощелочной среде. А также, в нейтральной (или слабощелочной), но при нагревании .

В кислой среде тоже иногда нагревают. Но чтобы жесткое окисление пошло не в кислой среде, нагревание – обязательное условие.

Какие вещества будут подвергаться жесткому окислению? (Вначале разберем только в кислой среде – а потом дополним нюансами, которые возникают при окислении в сильнощелочной и нейтральной или слабощелочной (при нагревании) среде).

При жестком окислении процесс идет по максимуму. Пока есть, что окисляться – окисление идет.

  1. Спирты. Альдегиды .

Рассмотрим окисление этанола. Поступенчато он окисляется до кислоты:

Записываем уравнение. Записываем исходные вещества, продукты ОВР, проставляем степени окисления, составляем баланс. Уравниваем реакцию:

Если реакцию проводить при температуре кипения альдегида, когда он будет образовываться, то будет испаряться (улетать) из реакционной смеси, не успевая окисляться дальше. Того же эффекта можно добиться в очень щадящих условиях (слабое нагревание). В этом случае в качестве продукта пишем альдегид:

Рассмотрим окисление вторичного спирта на примере пропанола-2. Как уже было сказано, окисление обрывается на втором этапе (образование карбонильного соединения). Так как образуется кетон, который не окисляется. Уравнение реакции:

Окисление альдегидов рассмотрим на примете этаналя. Он тоже окисляется до кислоты:

Уравнение реакции:

Метаналь и метанол, как было сказано ранее, окисляются до углекислого газа:

Метаналь:

  1. Содержащие кратные связи .

При этом происходит разрыв цепи по кратной связи. И атомы, которые образовывали ее подвергаются окислению (приобретают связь с кислородом). Окисляются насколько это возможно.

При разрыве двойной связи из обрывков образуются карбонильные соединения (в схеме ниже: из одного обрывка – альдегид, из другого – кетон)

Разберем окисление пентена-2:

Окисление «обрывков»:

Получается, что образуется две кислоты. Запишем исходные вещества и продукты. Определим степени окисления у атомов, которые ее меняют, составим баланс, уравняем реакцию:

Составляя электронный баланс, имеем ввиду, что восстановителя два – два атома углерода, окисляются они по-отдельности:

Не всегда будет образовываться кислота. Разберем, например, окисление 2-метилбутена:

Уравнение реакции:

Абсолютно тот же самый принцип при окислении соединений с тройной связью (только окисление идет сразу с образованием кислоты, без промежуточного образования альдегида):

Уравнение реакции:

Когда кратная связь расположена ровно посередине, то получается не два продукта, а один. Так как «обрывки» одинаковые и окисляются они до одинаковых продуктов:

Уравнение реакции:

  1. Дважды коронованная кислота .

Есть одна кислота, у которой карбоксильные группы (короны) соединены друг с другом:

Это щавелевая кислота. Две короны рядом трудно уживаются. Она конечно устойчива в обычных условиях. Но из-за того, что в ней две карбоксильные группы соединены друг с другом, она менее устойчивая, чем другие карбоновые кислоты.

И поэтому при особо жестких условиях она может быть окислена. Происходит разрыв связи между «двумя коронами»:

Уравнение реакции:

  1. Гомологи бензола (и их производные) .

Сам бензол не окисляется, из-за того, что ароматичность делает эту структуру очень устойчивой

А вот его гомологи окисляются. При этом тоже происходит разрыв цепи, главное знать где именно. Действуют некоторые принципы:

  1. Бензольное кольцо само не разрушается, и остается целым до конца, разрыв связи происходит в радикале.
  2. Окисляется атом, непосредственно связанный с бензольным кольцом. Если после него углеродная цепь в радикале продолжается – то разрыв будет после него.

Разберем окисление метилбензола. Там окисляется один атом углерода в радикале:

Уравнение реакции:

Разберем окисление изобутилбензола:

Уравнение реакции:

Разберем окисление втор-бутилбензола:

Уравнение реакции:

При окислении гомологов бензола (и производных гомологов) с несколькими радикалами, образуются двух- трех- и более основные ароматические кислоты. Например, окисление 1,2-диметилбензола:

Производные гомологов бензола (в которых у бензольного кольца есть не углеводородные радикалы), окисляются так же. Другая функциональная группа у бензольного кольца не мешает:

Промежуточный итог. Алгоритм «как записать реакцию жесткого окисления перманганатом в кислой среде»:

  1. Записать исходные вещества (органика + KMnO 4 + H 2 SO 4).
  2. Записать продукты окисления органики (окисляться будут соединения содержащие спиртовую, альдегидную группы, кратные связи, а также гомологи бензола).
  3. Записать продукт восстановления перманганата (MnSO 4 + K 2 SO 4 + H 2 O).
  4. Определить степени окисления у участников ОВР. Составить баланс. Проставить коэффициенты у окислителя и восстановителя, а также у веществ, которые из них образуются.
  5. Затем рекомендовано посчитать сколько сульфат-анионов в правой части уравнения, в соответствии с этим поставить коэффициент перед серной кислотой слева.
  6. В конце поставить коэффициент перед водой.

Жесткое окисление в сильнощелочной среде и нейтральной или слабощелочной (при нагревании) среде .

Эти реакции встречаются гораздо реже. Можно сказать, что такие реакции – это экзотика. И как положено любым экзотическим реакциям, эти оказались самыми противоречивыми.

Жесткое окисление оно и в Африке жесткое, поэтому органика окисляется так же, как и в кислой среде.

Отдельно реакции для каждого класса разбирать не будем, так как общий принцип уже изложен ранее. Разберем только нюансы.

Сильнощелочная среда :

В сильнощелочной среде перманганат восстанавливается до степени окисления +6 (манганат калия):

KMnO 4 + KOH → K 2 MnO 4 .

В сильнощелочной среде щелочи всегда избыток, поэтому будет проходить полная нейтрализация: если образуется углекислый газ – будет карбонат, если образуется кислота – будет соль (если кислота многоосновная – средняя соль).

Например, окисление пропена:

Окисление этилбензола:

Слабощелочная или нейтральная среда при нагревании :

Здесь также необходимо всегда учитывать возможность нейтрализации.

Если окисление протекает в нейтральной среде и образуется кислотное соединение (кислота или углекислый газ), то образующаяся щелочь будет нейтрализовать это кислотное соединение. Но не всегда щелочи хватит на полную нейтрализацию кислоты.

При окислении альдегидов, например, ее не хватает (окисление будет протекать так же, как и в мягких условиях – температура просто ускорит реакцию). Поэтому образуется и соль, и кислота (оставшаяся грубо говоря в избытке).

Мы это обсуждали, когда разбирали мягкое окисление альдегидов.

Поэтому если у вас образуется кислота в нейтральной среде, нужно внимательно посмотреть хватит ли ее на нейтрализацию всей кислоты. Особое внимание нужно уделить нейтрализации многоосновных кислот.

В слабощелочной среде из-за достаточного количества щелочи образуются только средние соли, так, как щелочи избыток.

Как правило, щелочи при окислении в нейтральной среде вполне хватает. И уравнение реакции что в нейтральной, что в слабощелочной среде будут одинаковы.

Для примера разберем окисление этилбензола:

Щелочи вполне хватает на полную нейтрализацию полученных кислотных соединений, даже лишнего останется:

Расходуется 3 моля щелочи – 1 остается.

Конечное уравнение:

Эта реакция в нейтральной и слабощелочной среде будет идти одинаково (в слабощелочной среде слева щелочи нет, но это не значит, что ее нет, просто она в реакцию не вступает).

Окислительно-восстановительные реакции с участием дихромата (бихромата) калия.

Бихромат не имеет такого большого разнообразия реакций окисления органики в ЕГЭ.

Окисление бихроматом проводится как правило только в кислой среде. При это хром восстанавливается до +3. Продукты восстановления:

Окисление будет жестким. Реакция будет очень похожа на окисление перманганатом. Окисляться будут те же вещества, что окисляются перманганатом в кислой среде, образовываться будут те же продукты.

Разберем некоторые реакции.

Рассмотрим окисление спирта. Если проводить окисление при температуре кипения альдегида, то он будет уходить их реакционной смеси, не подвергаясь окислению:

В противном случае, спирт может быть напрямую окислен до кислоты.

Альдегид, полученный в ходе предыдущей реакции, можно «поймать», и заставить его окисляться до кислоты:

Окисление циклогексанола. Циклогексанол является вторичным спиртом, поэтому образуется кетон:

Если тяжело определить степени окисления атомов углерода по такой формуле, на черновике можно расписать:

Уравнение реакции:

Рассмотрим окисление циклопентена.

Двойная связь рвется (цикл размыкается), атомы, которые ее образовывали окисляются до максимума (в данном случае, до карбоксильной группы):

Некоторые особенности окисления в ЕГЭ, с которыми мы не совсем согласны.

Те «правила», принципы и реакции, которые будут рассмотрены в этом разделе, мы считаем не совсем корректными. Они противоречат не только реальному положению дел (химии как науке), но и внутренней логике школьной программы и ЕГЭ в частности.

Но тем не менее, мы вынуждены дать этот материал именно в том виде, который требует ЕГЭ.

Речь пойдет именно о ЖЕСТКОМ окислении.

Помните, как окисляются гомологи бензола и их произсодные в жестких условиях? Радикалы все обрываются – образуются карбоксильные группы. Обрывки подвергаются окислению уже «самостоятельно»:

Так вот, если вдруг радикале появляется гидроксильная группа, или кратная связь, нужно забыть, что там есть бензольное кольцо. Реакция пойдет ТОЛЬКО по этой функциональной группе (или кратной связи).

Функциональная группа и кратная связь главнее бензольного кольца.

Разберем окисление каждого вещества:

Первое вещество:

Нужно не обращать внимание на то, что есть бензольное кольцо. С точки зрения ЕГЭ – это всего лишь вторичный спирт. Вторичные спирты окисляются до кетонов, а кетоны далее не окисляются:

Пусть это вещество у нас будет окисляться бихроматом:

Второе вещество:

Это вещество окисляется, просто как соединение с двойной связью (на бензольное кольцо не обращаем внимание):

Пусть оно будет окисляться в нейтральном перманганате при нагревании:

Образовавшейся щелочи хватает на полную нейтрализацию углекислого газа:

2KOH + CO 2 → K 2 CO 3 + H 2 O

Итоговое уравнение:

Окисление третьего вещества:

Пусть окисление будет протекать перманганатом калия в кислой среде:

Окисление четвертого вещества:

Оно пусть окисляется в сильнощелочной среде. Уравнение реакции будет:

Ну и напоследок, вот так окисляется винилбензол:

А окисляется он до бензойной кислоты, нужно иметь ввиду, что по логике ЕГЭ он так окисляется не потому, что он – производное бензола. А потому, что он содержит двойную связь.

Заключение .

Это все, что нужно знать об окислительно-восстановительных реакциях с участием перманганата и бихромата в органике.

Не удивляйтесь если, некоторые моменты изложенные в данной статье, вы слышите впервые. Как уже было сказано, тема эта очень обширная и противоречивая. И несмотря на это почему-то ей уделяется крайне мало внимания.

Как вы, возможно, убедились, двумя-тремя реакциями не объяснить всех закономерностей этих реакций. Здесь нужен комплексный подход и подробное объяснения всех моментов. К сожалению в учебниках и на интернет ресурсах тема раскрыта не полностью, либо не раскрыта совсем.

Я постарался устранить эти недоработки и недочеты и рассмотреть эту тему целиком, а не частично. Надеюсь, мне это удалось.

Благодарю Вас за внимание, всего Вам хорошего! Успехов в освоении химической науки и сдаче экзаменов!

Класс: 10

Презентация к уроку


























Назад Вперёд

Внимание! Предварительный просмотр слайдов используется исключительно в ознакомительных целях и может не давать представления о всех возможностях презентации. Если вас заинтересовала данная работа, пожалуйста, загрузите полную версию.

1. Цель занятия: познакомить обучающихся с общими и специфическими свойствами метановой кислоты в ходе выполнения заданий кроссворда «Химия муравьиной кислоты», в том числе при решении задач на вывод формулы органического вещества (см. Приложение 1 ) (слайды 1-2 ).

2. Тип урока: урок изучения нового материала.

3. Оборудование: компьютер, проектор, экран, видеоролики химического эксперимента (окисление муравьиной кислоты перманганатом калия и разложение муравьиной кислоты под действием концентрированной серной кислоты), презентация к уроку, листы для учащихся (см. Приложение 2 ).

4. Ход урока

При изучении строения муравьиной кислоты учитель сообщает, что эта кислота отлична от остальных членов гомологического ряда предельных монокарбоновых кислот, т.к. карбоксильная группа связана не с углеводородным радикалом –R, а с Н-атомом (слайд 3 ). Учащиеся приходят к выводу, что муравьиная кислота проявляет свойства как карбоновых кислот, так и альдегидов, т.е. является альдегидокислотой (слайд 4 ).

Изучение номенклатуры проводится в процессе решения задачи (слайд 5 ): «Соли предельной одноосновной карбоновой кислоты называются формиаты. Установите название этой кислоты (по номенклатуре ИЮПАК), если известно, что она содержит 69,5% кислорода ». Решение задачи оформляется одним из учеников класса на доске. Ответ – муравьиная или метановая кислота (слайд 6 ).

Далее учитель сообщает учащимся (слайд 7 ), что муравьиная кислота встречается в едких выделениях жалящих гусениц и пчел, в жгучей крапиве, хвое, некоторых фруктах, в поте и моче животных и в кислых выделениях муравьев , где ее обнаружил в 1794 году немецкий химик Маргграф Андреас-Сигизмунд (слайд 8 ).

При изучении физических свойств муравьиной кислоты учитель сообщает, что это бесцветная, едкая жидкость с острым запахом и жгучим вкусом, имеющая температуры кипения и плавления близкие по значениям к воде (tкип. = 100,7 o С, tпл. = 8,4 o С). Как и вода образует водородные связи, поэтому в жидком и твердом состоянии образует линейные и циклические ассоциаты (слайд 9 ), смешивается с водой в любых соотношениях («подобное растворяется в подобном»). Далее одному из учащихся предлагается решить задачу у доски: «Известно, что плотность паров муравьиной кислоты по азоту составляет 3,29. Поэтому можно утверждать, что в газообразном состоянии муравьиная кислота существует в виде… » В ходе решения задачи обучающиеся приходят к выводу, что в газообразном состоянии муравьиная кислота существует в виде димеров – циклических ассоциатов (слайд 10 ).

Получение муравьиной кислоты (слайд 11-12 ) изучаем на следующих примерах:

1. Окислением метана на катализаторе:

2. Гидролизом циановодородной кислоты (здесь следует напомнить обучающимся, что у атома углерода одновременно не может быть более двух гидроксильных групп – происходит дегидратация с образованием карбоксильной группы):

3. Взаимодействием гидрида калия с оксидом углерода(IV):

4. Термическим разложением щавелевой кислоты в присутствии глицерина:

5. Взаимодействием угарного газа со щелочью:

6. Наиболее выгодным способом (с точки зрения экономических затрат – безотходный процесс) получения муравьиной кислоты является получение сложного эфира муравьиной кислоты (с последующим кислотным гидролизом) из угарного газа и предельного одноатомного спирта:

Так как последний способ получения муравьиной кислоты является наиболее перспективным, то обучающимся далее предлагается решить у доски следующую задачу (слайд 12 ): «Установите формулу спирта, который многократно (возвращая в цикл) используют для реакции с оксидом углерода(II), если известно, что при сгорании 30 г эфира образуется 22,4 л углекислого газа и 18 г воды. Установите название этого спирта». В ходе решения задачи обучающиеся приходят к выводу, что для синтеза муравьиной кислоты используется метиловый спирт (слайд 13 ).

При изучении действия муравьиной кислоты на организм человека (слайд 14 ) учитель сообщает обучающимся, что пары муравьиной кислоты раздражают верхние дыхательные пути и слизистые оболочки глаз, проявляет раздражающий эффект или разъедающее действие – вызывает химические ожоги (слайд 15 ). Далее школьникам предлагается найти в средствах массовой информации или в справочных изданиях способы устранения жжения, вызванные действием крапивы и укусами муравьев (проверка осуществляется на следующем уроке).

Химические свойства муравьиной кислоты начинаем изучать (слайд 16 ) с реакций с разрывом связи О-Н (замещение Н-атома):

Для закрепления материала предлагается решить следующую задачу (слайд 18 ): «При взаимодействии 4,6 г муравьиной кислоты с неизвестным предельным одноатомным спиртом образовалось 5,92 г сложного эфира (используется как растворитель и добавка к некоторым сортам рома, чтобы предать ему характерный аромат, применяется в производстве витаминов B1, А, Е). Установите формулу эфира, если известно, что выход реакции составляет 80%. Назовите сложный эфир по номенклатуре ИЮПАК». В ходе решения задачи десятиклассники приходят к выводу, что полученный сложный эфир это – этилформиат (слайд 19 ).

Учитель сообщает (слайд 20 ), что реакции с разрывом связи С-Н (у α-С-атома) для муравьиной кислоты не характерны , т.к. R=Н. А реакция с разрывом связи С-С (декарбоксилирование солей карбоновых кислот приводит к образованию алканов!) приводит к получению водорода:

В качестве примеров реакций восстановления кислоты приводим взаимодействие с водородом и сильным восстановителем – иодоводородной кислотой:

Знакомство с реакциями окисления, протекающими по схеме (слайд 21 ):

целесообразно провести в ходе выполнения задания (слайд 22 ):

«Соотнесите формулы реагентов, условий проведения реакций с продуктами реакции » (учитель может показать в качестве примера первое уравнение, а остальные предложить обучающимся как домашнее задание):

НСООН + Реагент, условия проведения реакции

Продукт 1

Продукт 2

1) Ag 2 O, NH 3 , t o C 1) CO 1)
2) Br 2 (р-р) 2) CO, H 2 O 2) K 2 SO 4 , MnSO 4
3) KMnO4, Н 2 SO 4 , t o C 3) H 2 O 3) Cu 2 Ov
4) Сl 2 (р-р) 4) CO 2 4) HCl
5) Cu(OH) 2 (свежий), t o C 5) CO 2 , H 2 O 5) Agv
6) Ir или Rh 6) CO 2 , H 2 6) HBr
7) H 2 O 2 7) CO, H 2 7) H-C(O)OOH

Ответы следует записать в виде последовательности цифр.

Ответы:

1)
2)
3)
4)
5)
6)
7)
5
4
5
4
5
6
3
5
6
2
4
3
1
7

При составлении уравнений обучающиеся приходят к выводу, что во всех этих реакциях происходит окисление муравьиной кислоты, т.к. она является сильным восстановителем (слайд 23 ).

Изучение вопроса «Применение муравьиной кислоты» осуществляется при ознакомлении со схемой (слайд 24 ).

Обучающиеся уточняют использование в медицине «муравьиного спирта» (можно выйти в сеть Интернет) и называют заболевание – ревматизм (слайд 25 ).

При наличии свободного времени учитель сообщает школьникам (слайд 26 ) о том, что раньше «муравьиный спирт» готовили настаиванием муравьев на спирту.
Сообщает, что общий объем мирового производства муравьиной кислоты в последние годы стал расти, т.к. во всех странах мира наблюдается гибель пчел от клещей (Varroa): прогрызая у пчел хитиновый покров, они высасывают гемолимфу, и пчелы гибнут (действенным средством против этих клещей является муравьиная кислота).

5. Итоги урока

В конце урока учащиеся подводят итоги: оценивают работу одноклассников у доски, поясняют, с каким новым учебным материалом (общие и специфические свойства муравьиной кислоты) познакомились.

6. Литература

1. Дерябина Н.Е. Органическая химия. Книга 1. Углеводороды и их монофункциональные производные. Учебник-тетрадь. – М.: ИПО «У Никитских ворот», 2012. – С. 154-165.
2. Казеннова Н.Б. Справочник школьника по органической химии/Для средней школы. – М.: Аквариум, 1997. – С. 155-156.
3. Левитина Т.П. Справочник по органической химии: Учебное пособие. – СПб.: «Паритет», 2002. – С. 283-284.
4. Репетитор по химии/Под ред. А.С. Егорова . 14-е изд. – Ростов н/Д: Феникс, 2005. – С. 633-635.
5. Рутзитис Г.Е., Фельдман Ф.Г. Химия 10. Органическая химия: Учебник для 10 кл. средней школы. – М., 1992. – С. 110.
6. Чернобельская Г.М. Химия: учеб. пособие для мед. образоват. Учреждений/Г.М. Чернобельская, И.Н. Чертков. – М.: Дрофа, 2005. – С.561-562.
7. Эткинс П. Молекулы: Пер. с англ. – М.: Мир, 1991. – С. 61-62.

В окислительно-восстановительных реакциях органические вещества чаще проявляют свойства восстановителей, а сами окисляются. Легкость окисления органических соединений зависит от доступности электронов при взаимодействии с окислителем. Все известные факторы, вызывающие увеличение электронной плотности в молекулах органических соединений (например, положительные индуктивный и мезомерные эффекты), будут повышать их способность к окислению и наоборот.

Склонность органических соединений к окислению возрастает с ростом их нуклеофильности , что соответствует следующим рядам:

Рост нуклеофильности в ряду

Рассмотрим окислительно-восстановительные реакции представителей важнейших классов органических веществ с некоторыми неорганическими окислителями.

Окисление алкенов

При мягком окислении алкены превращаются в гликоли (двухатомные спирты). Атомы-восстановители в этих реакциях – атомы углерода, связанные двойной связью.

Реакция с раствором перманганата калия протекает в нейтральной или слабо щелочной среде следующим образом:

3C 2 H 4 + 2KMnO 4 + 4H 2 O → 3CH 2 OH–CH 2 OH + 2MnO 2 + 2KOH

В более жестких условиях окисление приводит к разрыву углеродной цепи по двойной связи и образованию двух кислот (в сильно щелочной среде – двух солей) или кислоты и диоксида углерода (в сильно щелочной среде – соли и карбоната):

1) 5CH 3 CH=CHCH 2 CH 3 + 8KMnO 4 + 12H 2 SO 4 → 5CH 3 COOH + 5C 2 H 5 COOH + 8MnSO 4 + 4K 2 SO 4 + 17H 2 O

2) 5CH 3 CH=CH 2 + 10KMnO 4 + 15H 2 SO 4 → 5CH 3 COOH + 5CO 2 + 10MnSO 4 + 5K 2 SO 4 + 20H 2 O

3) CH 3 CH=CHCH 2 CH 3 + 8KMnO 4 + 10KOH → CH 3 COOK + C 2 H 5 COOK + 6H 2 O + 8K 2 MnO 4

4) CH 3 CH=CH 2 + 10KMnO 4 + 13KOH → CH 3 COOK + K 2 CO 3 + 8H 2 O + 10K 2 MnO 4

Дихромат калия в сернокислотной среде окисляет алкены аналогично реакциям 1 и 2.

При окислении алкенов, в которых атомы углерода при двойной связи содержат по два углеродных радикала, происходит образование двух кетонов:


Окисление алкинов

Алкины окисляются в несколько более жестких условиях, чем алкены, поэтому они обычно окисляются с разрывом углеродной цепи по тройной связи. Как и в случае алкенов, атомы-восстановители здесь – атомы углерода, связанные кратной связью. В результате реакций образуются кислоты и диоксид углерода. Окисление может быть проведено перманганатом или дихроматом калия в кислотной среде, например:

5CH 3 C≡CH + 8KMnO 4 + 12H 2 SO 4 → 5CH 3 COOH + 5CO 2 + 8MnSO 4 + 4K 2 SO 4 + 12H 2 O

Ацетилен может быть окислен перманганатом калия в нейтральной среде до оксалата калия:

3CH≡CH +8KMnO 4 → 3KOOC –COOK +8MnO 2 +2КОН +2Н 2 О

В кислотной среде окисление идет до щавелевой кислоты или углекислого газа:

5CH≡CH +8KMnO 4 +12H 2 SO 4 → 5HOOC –COOH +8MnSO 4 +4К 2 SO 4 +12Н 2 О
CH≡CH + 2KMnO 4 +3H 2 SO 4 → 2CO 2 + 2MnSO 4 + 4H 2 O + K 2 SO 4

Окисление гомологов бензола

Бензол не окисляется даже в довольно жестких условиях. Гомологи бензола могут быть окислены раствором перманганата калия в нейтральной среде до бензоата калия:

C 6 H 5 CH 3 +2KMnO 4 → C 6 H 5 COOK + 2MnO 2 + KOH + H 2 O

C 6 H 5 CH 2 CH 3 + 4KMnO 4 → C 6 H 5 COOK + K 2 CO 3 + 2H 2 O + 4MnO 2 + KOH

Окисление гомологов бензола дихроматом или перманганатом калия в кислотной среде приводит к образованию бензойной кислоты.

5С 6 Н 5 СН 3 +6КMnO 4 +9 H 2 SO 4 → 5С 6 Н 5 СООН+6MnSO 4 +3K 2 SO 4 + 14H 2 O

5C 6 H 5 –C 2 H 5 + 12KMnO 4 + 18H 2 SO 4 → 5C 6 H 5 COOH + 5CO 2 + 12MnSO 4 + 6K 2 SO 4 + 28H 2 O


Окисление спиртов

Непосредственным продуктом окисления первичных спиртов являются альдегиды, а вторичных – кетоны.

Образующиеся при окислении спиртов альдегиды легко окисляются до кислот, поэтому альдегиды из первичных спиртов получают окислением дихроматом калия в кислотной среде при температуре кипения альдегида. Испаряясь, альдегиды не успевают окислиться.

3C 2 H 5 OH + K 2 Cr 2 O 7 + 4H 2 SO 4 → 3CH 3 CHO + K 2 SO 4 + Cr 2 (SO 4) 3 + 7H 2 O

С избытком окислителя (KMnO 4 , K 2 Cr 2 O 7) в любой среде первичные спирты окисляются до карбоновых кислот или их солей, а вторичные – до кетонов.

5C 2 H 5 OH + 4KMnO 4 + 6H 2 SO 4 → 5CH 3 COOH + 4MnSO 4 + 2K 2 SO 4 + 11H 2 O

3CH 3 –CH 2 OH + 2K 2 Cr 2 O 7 + 8H 2 SO 4 → 3CH 3 –COOH + 2K 2 SO 4 + 2Cr 2 (SO 4) 3 + 11H 2 O

Третичные спирты в этих условиях не окисляются, а метиловый спирт окисляется до углекислого газа.

Двухатомный спирт, этиленгликоль HOCH 2 –CH 2 OH, при нагревании в кислой среде с раствором KMnO 4 или K 2 Cr 2 O 7 легко окисляется до щавелевой кислоты, а в нейтральной – до оксалата калия.

5СН 2 (ОН) – СН 2 (ОН) + 8КMnO 4 +12H 2 SO 4 → 5HOOC –COOH +8MnSO 4 +4К 2 SO 4 +22Н 2 О

3СН 2 (ОН) – СН 2 (ОН) + 8КMnO 4 → 3KOOC –COOK +8MnO 2 +2КОН +8Н 2 О

Окисление альдегидов и кетонов

Альдегиды – довольно сильные восстановители, и поэтому легко окисляются различными окислителями, например: KMnO 4 , K 2 Cr 2 O 7 , OH, Cu(OH) 2 . Все реакции идут при нагревании:

3CH 3 CHO + 2KMnO 4 → CH 3 COOH + 2CH 3 COOK + 2MnO 2 + H 2 O

3CH 3 CHO + K 2 Cr 2 O 7 + 4H 2 SO 4 → 3CH 3 COOH + Cr 2 (SO 4) 3 + 7H 2 O

CH 3 CHO + 2KMnO 4 + 3KOH → CH 3 COOK + 2K 2 MnO 4 + 2H 2 O

5CH 3 CHO + 2KMnO 4 + 3H 2 SO 4 → 5CH 3 COOH + 2MnSO 4 + K 2 SO 4 + 3H 2 O

CH 3 CHO + Br 2 + 3NaOH → CH 3 COONa + 2NaBr + 2H 2 O

реакция «серебряного зеркала»

C аммиачным раствором оксида серебра альдегиды окисляются до карбоновых кислот которые в аммиачном растворе дают соли аммония (реакция «серебрянного зеркала»):

CH 3 CH=O + 2OH → CH 3 COONH 4 + 2Ag + H 2 O + 3NH 3

CH 3 –CH=O + 2Cu(OH) 2 → CH 3 COOH + Cu 2 O + 2H 2 O

Муравьиный альдегид (формальдегид) окисляется, как правило, до углекислого газа:

5HCOH + 4KMnO 4 (изб ) + 6H 2 SO 4 → 4MnSO 4 + 2K 2 SO 4 + 5CO 2 + 11H 2 O

3СН 2 О + 2K 2 Cr 2 O 7 + 8H 2 SO 4 → 3CO 2 +2K 2 SO 4 + 2Cr 2 (SO 4) 3 + 11H 2 O

HCHO + 4OH → (NH 4) 2 CO 3 + 4Ag↓ + 2H 2 O + 6NH 3

HCOH + 4Cu(OH) 2 → CO 2 + 2Cu 2 O↓+ 5H 2 O

Кетоны окисляются в жестких условия сильными окислителями с разрывом связей С-С и дают смеси кислот:

Карбоновые кислоты. Среди кислот сильными восстановительными свойствами обладают муравьиная и щавелевая, которые окисляются до углекислого газа.

НСООН + HgCl 2 =CO 2 + Hg + 2HCl

HCOOH+ Cl 2 = CO 2 +2HCl

HOOC-COOH+ Cl 2 =2CO 2 +2HCl

Муравьиная кислота , кроме кислотных свойств, проявляет также некоторые свойства альдегидов, в частности, восстановительные. При этом она окисляется до углекислого газа. Например:

2KMnO4 + 5HCOOH + 3H2SO4 → K2SO4 + 2MnSO4 + 5CO2 + 8H2O

При нагревании с сильными водоотнимающими средствами (H2SO4 (конц.) или P4O10) разлагается:

HCOOH →(t) CO + H2O

Каталитическое окисление алканов:

Каталитическое окисление алкенов:

Окисление фенолов:

      Взаимодействие муравьиной кислоты с аммиачным раствором гидроксида серебра (реакция серебряного зеркала). В молекуле муравьиной кислоты НСООН имеется альдегидная группа, поэтому открыть ее в растворе можно реакциями, характерными для альдегидов, например реакцией серебряного зеркала.

Готовят в пробирке аммиачный раствор арґентум (Ι)гидроксида. Для этого к 1 - 2 мл 1-процентного раствора арґентум (Ι) нитрата добавляют 1 - 2 капли 10-процентного раствора натрий гидроксида, образовавшийся осадок арґентум (Ι) оксида растворяют, добавляя по каплям 5-процентный раствор аммиака. К полученному прозрачному раствору добавляют 0,5 мл муравьиной кислоты. Пробирку с реакционной смесью нагревают несколько минут в водяной бане (температура воды в бане 60 0 -70 0 С). Металлическое серебро выделяется в виде зеркального налета на стенках пробирки или в виде темного осадка.

НСООН+2Ag[(NH 3) 2 ]ОН → CO 2 + H 2 O+2Ag+ 4NH 3

б) Окисление муравьиной кислоты калий перманганатом. В пробирку помещают примерно 0,5г муравьиной кислоты или ее соли, 0,5 мл 10- процентного раствора сульфатной кислоты и 1мл 5-процентного раствора калий перманганата. Пробирку закрывают пробкой с газоотводной трубкой, конец которой опускают в другую пробирку с 2мл известковой (или баритовой) воды, и нагревают реакционную смесь.

5НСООН+2KMnO 4 +3H 2 SO 4 → 5CO 2 +8H 2 O+K 2 SO 4 +2MnSO 4

в) Разложение муравьиной кислоты при нагревании с концентрированной серной кислотой. (Тяга!) В сухую пробирку вносят 1 мл муравьиной кислоты или 1 г ее соли и 1 мл концентрированной сульфатной кислоты. Пробирку закрывают пробкой с газоотводной трубкой и осторожно нагревают. Муравьиная кислота разлагается с образованием карбон (II) оксида и воды. Карбон (II) оксид поджигают у отверстия газоотводной трубки. Обратите внимание на характер пламени.

После окончания работы пробирку с реакционной смесью необходимо охладить, чтобы прекратить выделение ядовитого угарного газа.

Опыт 12 . Взаимодействие стеариновой и олеиновой кислот со щелочью.

В сухой пробирке растворяют примерно 0,5 г стеарина в диэтиловом эфире (без нагревания) и добавляют 2 капли 1-процентного спиртового раствора фенолфталеина. Затем по каплям приливают 10-процентный раствор натрий гидроксида. Появляющаяся вначале малиновая окраска исчезает при встряхивании.

Напишите уравнение реакции стеариновой кислоты с натрий гидроксидом. (Стеарин представляет собой смесь стеариновой и пальмитиновой кислот.)

С 17 H 35 COOH+NaOH→ С 17 H 35 COONa+H 2 O

натрий стеарат

Повторяют опыт, используя 0,5 мл олеиновой кислоты

С 17 H 33 COOH+NaOH→С 17 H 33 COONa+Н 2 О

олеат натрия

Опыт13 . Отношение олеиновой кислоты к бромной воде и раствору перманганата калия.

а)Реакция олеиновой кислоты с бромной водой В пробирку наливают 2 мл воды и вносят около 0,5 г олеиновой кислоты. Смесь энергично взбалтывают.

б) Окисление олеиновой кислоты калий перманганатом. В пробирку помещают 1 мл 5-процентного раствора калий перманганата, 1мл 10-процентного раствора натрий карбоната и 0,5 мл олеиновой кислоты. Смесь энергично перемешивают. Отмечают изменения, происходящие с реакционной смесью.

Опыт 14 . Возгонка бензойной кислоты.

Возгонку малых количеств бензойной кислоты ведут в фарфоровой чашке, закрытой широким концом конической воронки (см. рис. 1), диаметр которой несколько меньше диаметра чашки.

Носик воронки закрепляют в лапке штатива и плотно закрывают ватой, а для того, чтобы возгон не попадал обратно в чашку, ее прикрывают круглым листком фильтровальной бумаги с несколькими отверстиями в нем. Фарфоровую чашку с мелкими кристаллами бензойной кислоты (t пл =122,4 0 С; возгоняется ниже t пл) осторожно медленно нагревают на небольшом пламенигазовой горелки (на асбестовой сетке). Можно охладить верхнюю воронку, прикладывая смоченный холодной водой кусочек фильтровальной бумаги. После прекращения возгонки (через 15 - 20 мин) сублимат осторожнопереносят шпателем в склянку.

Примечание. Для проведения работы, бензойную кислоту можно загрязнитьпеском.

Пробирку, в которой образовалась эмульсия, закрывают пробкой с обратным холодильником, нагревают в водяной бане до начинающегося кипения и встряхивают. Увеличивается ли растворимость масла при нагревании?

Опыт повторяют, но вместо подсолнечного масла в пробирки с органическими растворителями вносят небольшое количество животного жира (свиного, говяжьего или бараньего сала),

б) Определение степени непредельности жира реакцией с бромной водой. (Тяга!) В пробирку наливают 0.5 мл подсолнечного масла и 3 мл бромной воды. Содержимое пробирки энергично взбалтывают. Что происходит с бромной водой?

в) Взаимодействие растительного масла с водным раствором калий перманганата (реакция Е. Е. Вагнера). В пробирку наливают примерно 0,5 мл подсолнечного масла, 1 мл 10-процентного раствора карбоната натрия и 1 мл 2-процентного раствора калий перманганата. Энергично встряхивают содержимое пробирки. Фиолетовая окраска калий перманганата исчезает.

Обесцвечивание бромной воды и реакция с водным раствором калий перманганата - качественные реакции на присутствие кратной связи (ненасыщенность) в молекуле органического вещества.

г) Омыление жира спиртовым раствором натрий гидроксида В коническую колбу емкостью 50 - 100 мл помещают 1.5 - 2 г твердого жира и приливают 6 мл 15-процентного спиртового раствора натрий гидроксида. Колбу закрывают пробкой с воздушным холодильником, перемешивают реакционную смесь и нагревают колбу в водяной бане при встряхивании в течение 10 – 12 мин (температура воды в бане около 80 0 С). Для определения конца реакции несколько капель гидролизата выливают в 2-3 мл горячей дистиллированной воды: если гидролизат растворяется полностью, без выделения капель жира, то реакцию можно считать законченной. После окончания омыления из гидролизата высаливают мыло добавлением 6 - 7 мл горячего насыщенного раствора натрий хлорида. Выделяющееся мыло всплывает, образуя на поверхности раствора слой. После отстаивания смесь охлаждают холодной водой, затвердевшее мыло отделяют.

Химизм процесса на примере тристеарина:

Опыт 17. Сравнение свойств мыла и синтетических моющих средств

а) Отношение к фенолфталеину. Налейте в одну пробирку 2-3 мл 1-процентного раствора хозяйственного мыла, в другую - столько же 1- процентного раствора синтетического стирального порошка. Добавьте в обе пробирки по 2-3 капли раствора фенолфталеина. Можно ли использовать данные моющие средства для стирки тканей, чувствительных к щелочам?

б) Отношение к кислотам. К растворам мыла и стирального порошка в пробирках добавьте насколько капель 10-процентного раствора кислоты (хлоридной или сульфатной). Образуется ли пена при встряхивании? Сохраняются ли моющие свойства исследуемых средств в кислой среде?

C 17 H 35 COONa+HCl→C 17 H 35 COOH↓+NaCl

в) Отношение к кальций хлориду. К растворам мыла и стирального порошка в пробирках добавляют по 0,5 мл 10-процентного раствора кальций хлорида. Встряхивают содержимое пробирок. Образуется ли при этом пена? Можно ли использовать данные средства для стирки в жесткой воде?

C 17 H 35 COONa+CaCl 2 →Ca(C 17 H 35 COO) 2 ↓+2NaCl

Опыт 18 . Взаимодействие глюкозы с аммиачным раствором аргентум (Ι) оксида (реакция серебряного зеркала).

В пробирку наливают 0.5 мл 1-процентного раствора аргентум(Ι) нитрата, 1 мл 10-процентного раствора натрий гидроксида и приливают по каплям 5-процентный раствор аммиака до растворения образовавшегося осадка аргентум (Ι) гидроксида. Затем добавляют 1 мл 1-процентного раствора глюкозы и нагревают содержимое пробирки 5 - 10 мин в водяной бане при 70 0 – 80 0 С. Металлическое серебро выделяется на стенках пробирки в виде зеркального налета. Во время нагревания пробирки нельзя встряхивать, иначе металлическое серебро выделится не на стенках пробирок, а в виде темного осадка. Чтобы получить хорошее зеркало, в пробирках предварительно кипятят 10-процентный раствор натрий гидроксида, затем их споласкивают дистиллированной водой.

В пробирку наливают 3 мл 1-процентного раствора сахарозы и прибавляют 1 мл 10-процентного раствора серной кислоты. Полученный раствор кипятят в течение 5 мин, затем охлаждают и нейтрализуют сухим гидрокарбонатом натрия, добавляя его небольшими порциями при перемешивании (осторожно, жидкость вспенивается от выделяющегося оксида углерода (IY)). После нейтрализации (когда прекратится выделение СО 2) приливают равный объем реактива Фелинга и нагревают верхнюю часть жидкости до начинающегося кипения.

Изменяется ли окраска реакционной смеси?

В другой пробирке нагревают смесь 1,5 мл 1-процентного раствора сахарозы с равным объемом реактива Фелинга. Сравнивают результаты опыта – реакцию сахарозы с реактивом Фелинга до гидролиза и после гидролиза.

С 12 Н 22 О 11 + Н 2 О С 6 Н 12 О 6 + С 6 Н 12 О 6

глюкоза фруктоза

Примечание. В условиях школьной лаборатории реактив Фелинга можно заменить купрум (ΙΙ)гидроксидом.

Опыт 20. Гидролиз целлюлозы.

В сухую коническую колбу емкостью 50 – 100 мл помещают немного очень мелко нарезанных кусочков фильтровальной бумаги (целлюлозы) и смачивают их концентрированной сульфатной кислотой. Тщательно перемешивают содержимое колбы стеклянной палочкой до полного разрушения бумаги и образования бесцветного вязкого раствора. После этого к нему добавляют небольшими порциями при перемешивании 15 – 20 мл воды (осторожно!), колбу соединяют с воздушным обратным холодильником и кипятят реакционную смесь 20 – 30 мин, перемешивая ее периодически. После окончания гидролиза отливают 2 – 3 мл жидкости, нейтрализуют ее сухим натрий карбонатом, добавляя его небольшими порциями (жидкость вспенивается), и обнаруживают присутствие восстанавливающих сахаров реакцией с реактивом Фелинга или купрум (ΙΙ) гидроксидом.

(C 6 H 10 O 5)n+nH 2 O→nC 6 H 12 O 6

Целлюлоза глюкоза

Опыт 21. Взаимодействие глюкозы с купрум (ΙΙ) гидроксидом.

а) В пробирку помещают 2 мл 1-процентного раствора глюкозы и 1 мл 10-процентного натрий гидроксида. К полученной смеси добавляют 1 - 2 капли 5-процентного раствора купрум (ΙΙ) сульфата и встряхивают содержимое пробирки. Образующийся вначале голубоватый осадок купрум (ІІ) гидроксида мгновенно растворяется, получается синий прозрачный раствор купрум (ΙΙ) сахарата. Химизм процесса (упрощенно): -
б) Содержимое пробирки нагревают над пламенем горелки, держа пробирку наклонно так, чтобы нагревалась только верхняя часть раствора, а нижняя оставалась без нагрева (для контроля). При осторожном нагревании до кипения, нагретая часть синего раствора окрашивается в оранжево-желтый цвет вследствие образования купрум (Ι) гидроксида. При более продолжительном нагревании может образоваться осадок купрум (Ι)оксида.

Опыт 22. Взаимодействие сахарозы с гидроксидами металлов. а) Реакция с купрум (ΙΙ) гидроксидом) в щелочной среде. В пробирке смешивают 1,5 мл 1-процентного раствора сахарозы и 1,5 мл 10-процентного раствора натрий гидроксида. Затем по каплям добавляют 5-процентный раствор купрум (ΙΙ) сульфата. Образующийся вначале бледно-голубой осадок купрум (ΙΙ) гидроксида при встряхивании растворяется, раствор приобретает сине-фиолетовую окраску вследствие образования комплексного купрум (ΙΙ) сахарата.

б) Получение кальций сахарата. В небольшой стакан (25 - 50 мл) наливают 5 - 7 мл 20-процентного раствора сахарозы и по каплям при перемешивании добавляют свежеприготовленное известковое молоко. Кальций гидроксид растворяется в растворе сахарозы. Способность сахарозы давать растворимые сахараты кальция используется в промышленности для очистки сахара при выделении его из сахарной свеклы. в) Специфические цветные реакции. В две пробирки наливают по 2 - 5 мл 10-процентного раствора сахарозы и по 1 мл 5-процентного раствора натрий гидроксида. Затем в одну пробирку добавляют несколько капель 5- процентного раствора кобальт (ΙΙ) сульфата, в другую - несколько капель 5- процентного раствора никель (ΙΙ) сульфата. В пробирке с солью кобальта появляется фиолетовое окрашивание, а с солью никеля - зеленое, Опыт2З. Взаимодействие крахмала с йодом. В пробирку наливают 1 мл 1 -процентного раствора крахмального клейстера и затем добавляют несколько капель сильно разбавленного водой йода в калий йодиде. Содержимое пробирки окрашивается в синий цвет. Полученную темно-синюю жидкость нагревают до кипения. Окраска при этом исчезает, но при охлаждении появляется вновь. Крахмал является неоднородным соединением. Он представляет собой смесь двух полисахаридов - амилозы (20%) и амилопектина (80%). Амилоза растворима в теплой воде и дает с йодом синее окрашивание. Амилоза состоит из почти неразветвленных цепей глюкозных остатков, обладающих структурой винта или спирали (примерно 6 глюкозных остатков в одном винте). Внутри спирали остается свободный канал диаметром около 5 мк, в который внедряются молекулы йода, образуя окрашенные комплексы. При нагревании эти комплексы разрушаются. Амилопектин в теплой воде не растворим, набухает в ней, образуя крахмальный клейстер. В его состав входят разветвленные цепи глюкозных остатков. Амилопектин с йодом дает красновато-фиолетовое окрашивание, обусловленное адсорбцией молекул йода на поверхности боковых цепей. Опыт 24. Гидролиз крахмала. а) Кислотный гидролиз крахмала. В коническую колбу емкостью 50 мл наливают 20 - 25 мл 1-процентного крахмального клейстера и 3 - 5 мл 10-процентного раствора сульфатной кислоты. В 7 - 8 пробирок наливают по 1 мл очень разбавленного раствора йода в калий йодиде (светло-желтого цвета), пробирки ставят в штатив. В первую пробирку вносят 1 – 3 капли подготовленного для опыта раствора крахмала. Отмечают образовавшуюся окраску. Затем колбу нагревают на асбестовой сетке небольшим пламенем горелки. Через 30 секунд после начала кипения отбирают пипеткой вторую пробу раствора, которую вносят во вторую пробирку с раствором йода, после встряхивания отмечают цвет раствора. В дальнейшем отбирают пробы раствора через каждые 30 секунд и вносят их в последующие пробирки с раствором йода. Отмечают постепенное изменение окраски растворов при реакции с йодом. Изменение окраски происходит в следующем порядке, см. табл.

После того как реакционная смесь перестанет давать окраску с йодом, смесь кипятят еще 2 - З мин после чего ее охлаждают и нейтрализуют 10 – процентным раствором натрий гидроксида, добавляя его по каплям до щелочной реакции среды (появления розовой окраски на фенолфталеиновой индикаторной бумаге). Часть щелочного раствора переливают в пробирку, смешивают с равным объемом реактива Фелинга или свежеприготовленной суспензией купрум (ΙΙ) гидроксида и нагревают верхнюю часть жидкости до начинающегося кипения.

(

Растворимый

Декстрины

С 6 Н 10 О 5)n (С 6 Н 10 О 5)x (С 6 Н 10 О 5)y

мальтоза

n/2 С 12 Н 22 O 11 nС 6 Н 12 О 6

б) Ферментативный гидролиз крахмала.

Хорошо разжевывают маленький кусочек черного хлеба и помещают его в пробирку. Вносят в нее несколько капель 5 - процентного раствора купрум (ΙΙ) сульфата и 05 - 1 мл 10-процентного раствора натрий гидроксида. Пробирку с содержимым нагревают. 3. Техника и методика демонстрационных опытов по получению и изучению свойств нитрогенсодержащих органических веществ.

Оборудование: химические стаканы, стеклянная палочка, пробирки, колба Вюрца, капельная воронка, химический стакан, стеклянные газоотводные трубки, соединительные резиновые трубки, лучинка.

Реактивы: анилин, метиламин, растворы лакмуса и фенолфталеина, концентрированная хлоридная кислота, раствор натрий гидроксида(10 %), раствор хлорной извести, концентрированная сульфатная кислота, концентрированная нитратная кислота, яичный белок, раствор медного купороса, плюмбум (ΙΙ) ацетат, раствор фенола, формалин.

Опыт 1 . Получение метиламина. В колбу Вюрца объемом 100 - 150 мл внести 5-7 г метиламин хлорида и закрыть пробкою со вставленной в нее капельной воронкой. Газоотводную трубку соединить резиновой трубкой со стеклянным наконечником и опустить в стакан с водой. Из воронки каплями добавлять раствор калий гидроксида (50 %). Смесь в колбе осторожно нагреть. Происходит разложение соли и выделение метиламина, который легко распознать по характерному запаху, который напоминает запах аммиака. Метиламин собирается на дне стакана под слоем воды: + Cl - +KOH → H 3 C – NH 2 +KCl+H 2 O

Опыт 2. Горение метиламина. Метиламин на воздухе горит бесцветным пламенем. К отверстию газоотводной трубки прибора, описанного в предыдущем опыте, поднести горящую лучинку и наблюдать горение метиламина: 4H 3 C – NH 2 +9O 2 → 4CO 2 +10 H 2 O+2N 2

Опыт 3. Отношение метиламина к индикаторам. Полученный метиламин пропустить в пробирку, заполненную водой и одним из индикаторов. Лакмус синеет, а фенолфталеин становится малиновым: H 3 C – NH 2 +H – OH → OH Это свидетельствует об основных свойствах метиламина.

Опыт 4. Образование солей метиламином. а) К отверстию пробирки, из которой выделяется газообразный метиламин, подносят стеклянную палочку, смоченную концентрированной хлоридной кислотой. Палочка окутывается туманом.

H 3 C – NH 2 +HCl → + Cl -

б) В две пробирки наливают по 1 - 2 мл: в одну - З-процентный раствор ферум (III) хлорида, в другую 5-процентный раствор купрум (ΙΙ)сульфата. В каждую пробирку пропускают газообразный метиламин. В пробирке с раствором ферум (III) хлорида выпадает бурый осадок, а в пробирке с раствором купрум (ΙΙ) сульфата образующийся вначале осадок голубого цвета растворяется с образованием комплексной соли, окрашенной в ярко-синий цвет. Химизм процессов:

3 + OH - +FeCl 3 → Fe(OH)↓+3 + Cl -

2 + OH - +CuSO 4 →Cu(OH) 2 ↓+ + SO 4 -

4 + OH - + Cu(OH) 2 →(OH) 2 +4H 2 O

Опыт 5 . Взаимодействие анилина с хлоридной кислотой. В пробирку с 5 мл анилина прилить столько же концентрированной хлоридной кислоты. Пробирку охладить в холодной воде. Выпадает осадок анилин гидроген хлорида. В пробирку с твердым гидроген хлоридным анилином прилить немного воды. После перемешивания, анилин гидроген хлорида растворяется в воде.

C 6 H 5 – NH 2 + HCl → Cl - Опыт 6. Взаимодействие анилина с бромной водой. К 5 мл воды прилить 2 -З капли анилина и смесь сильно встряхнуть. К полученной эмульсии по каплям прибавить бромную воду. Смесь обесцвечивается, и выпадает белый осадок триброманилина.

Опыт 7. Окрашивание ткани анилиновым красителем. Крашение шерсти и шелка кислотными красителями. Растворяют 0,1 г метилового оранжевого в 50 мл воды. Раствор разливают в 2 стакана. В один из них добавляют 5 мл 4н раствора сульфатной кислоты. Затем в оба стакана опускают кусочки белой шерстяной (или шелковой) ткани. Растворы с тканью кипятят 5 мин. Затем ткань вынимают, промывают водой, выжимают и высушивают на воздухе, развесив на стеклянных палочках. Обратите внимание на различие в интенсивности окраски кусочков ткани. Как влияет кислотность среды на процесс окраски ткани?

Опыт 8 . Доказательство наличия функциональных групп в растворах аминокислот. а) Обнаружение карбоксильной группы. К 1 мл 0,2-процентного раствора натрий гидроксида, окрашенного фенолфталеином в розовый цвет, прибавляют по каплям 1 - процентный раствор аминоацетатной кислоты (глицина) до обесцвечивания смеси HOOC – CH 2 – NH 2 + NaOH → NaOOC – CH 2 – NH 2 + H 2 O б) Обнаружение аминогруппы. К 1 мл 0,2-процентного - раствора хлоридной кислоты, окрашенного индикатором конго в синий цвет (кислая среда), прибавляют по каплям 1- процентный раствор глицина до изменения окраски смеси на розовую (нейтральная среда):

HOOC – CH 2 – NH 2 +HCl → Cl -

Опыт 9 . Действие аминокислот на индикаторы. В пробирку внести 0,3 г глицина и добавить 3 мл воды. Раствор разлить на три пробирки. В первую пробирку добавить 1 - 2 капли метилоранжа, во вторую - столько же раствора фенолфталеина, в третью - раствор лакмуса. Окраска индикаторов не меняется, что объясняется наличием в молекуле глицина кислотной (-СООН) и основной (-NH 2) групп, которые взаимно нейтрализуются.

Опыт 10. Осаждение белков. а) В две пробирки с раствором белка добавить по каплям растворы медного купороса и плюмбум (ΙΙ) ацетата. Образуются хлопьевидные осадки, растворяющиеся в избытке растворов солей.

б) В две пробирки с раствором белка добавляют равные объемы растворов фенола и формалина. Наблюдать осаждение белка. в) Нагреть раствор белка в пламени горелки. Наблюдать помутнение раствора, что обусловлено разрушением гидратных оболочек возле частичек белка и увеличение их.

Опыт 11 . Цветные реакции белков. а) Ксантопротеиновая реакция. К 1 мл белка добавить 5- 6 капель концентрированной нитратной кислоты. При нагревании раствор и осадок окрашивается в ярко-желтый цвет. б) Биуретовая реакция. К 1 - 2 мл раствора белка добавить столько же разбавленного раствора медного купороса. Жидкость окрашивается в красно-фиолетовый цвет. Биуретовая реакция дает возможность выявить в молекуле белка пептидную связь. Ксантопротеиновая реакция происходит только в том случае, если в молекулах белка содержатся остатки ароматических аминокислот (фенилаланин, тирозин, триптофан).

Опыт 12. Реакции с карбамидом. а) Растворимость мочевины в воде. В пробирку помещают 0,5 г кристаллической мочевины и постепенно добавляют воду до полного растворения мочевины. По капле полученного раствора наносят на красную и синюю лакмусовую бумагу. Какую реакцию (кислую, нейтральную или щелочную) имеет водный раствор мочевины? В водном растворе мочевина находится в виде двух таутомерных форм:

б) Гидролиз мочевины. Как и все амиды кислот, мочевина легко гидролизуется в кислой и в щелочной средах. Наливают в пробирку 1 мл 20-процентного раствора мочевины и добавляют 2 мл прозрачной баритовой воды. Раствор кипятят до появления в пробирке осадка барий карбоната. Выделяющийся из пробирки аммиак обнаруживают по посинению влажной лакмусовой бумаги.

H 2 N – C – NH 2 +2H 2 O→2NH 3 +[ HO – C – OH]→CO 2

→Н 2 О

Ba(OH) 2 + CO 2 →BaCO 3 ↓+ H 2 O

в) Образование биурета. В сухой пробирке нагревают 0,2 г мочевины. Сначала мочевина плавится (при 133 С), затем при дальнейшем нагревании разлагается с выделением аммиака. Аммиак обнаруживают по запаху (осторожно!) и по посинению влажной красной лакмусовой бумаги, поднесенной к отверстию пробирки. Через некоторое время расплав в пробирке затвердевает, несмотря на продолжающееся нагревание:

Пробирку охлаждают, добавляют в нее 1 -2 мл воды и при слабом нагревании растворяют биурет. В расплаве, кроме биурета, содержится некоторое количество труднорастворимой в воде циануровой кислоты, поэтому раствор получается мутным. Когда осадок отстоится, сливают с него раствор биурета в другую пробирку, добавляют несколько капель 10-процентного раствора натрий гидроксида (при этом раствор становится прозрачным) и 1-2 капли 1- процентного раствора купрум (ΙΙ)сульфата. Раствор окрашивается в розово-фиолетовый цвет. Избыток купрум (ΙΙ) сульфата маскирует характерное окрашивание, вызывая посинение раствора, поэтому его следует избегать.

Опыт 13. Функциональный анализ органических веществ. 1. Качественный элементарный анализ органических соединений. Наиболее распространенными элементами в органических соединениях, кроме Карбона, являются Гидроген, Оксиген, Нитроген, галогены, Сульфур, Фосфор. Обычные методы качественного анализа неприменимы для анализа органических соединений. Для обнаружения Карбона, Нитрогена, Сульфура и других элементов органическое вещество разрушают путем сплавления с натрием, при этом исследуемые элементы переходят в неорганические соединения. Например, Карбон переходит в карбон (IУ) оксид, Гидроген - в воду, Нитроген - в натрий цианид, Сульфур - в натрий сульфид, галогены - в натрий галогениды. Далее открывают элементы обычными методами аналитической химии.

1. Обнаружение Карбона и Гидрогена окислением вещества купрум(II) оксидом.

Прибор для одновременного обнаружения Карбона и Гидрогена в органическом веществе:

1 – сухая пробирка со смесью сахарозы и купрум (II) оксидом;

2 – пробирка с известковой водой;

4 – безводный купрум (ΙΙ) сульфат.

Наиболее общим, универсальным методом обнаружения в органическом веществе. углерода и одновременно с ним водорода является окисление купрум (II) оксидом. При этом Карбон превращается в карбон (IУ) оксид, а Гидроген - в воду. В сухую пробирку с газоотводной трубкой (рис. 2) помещают 0,2 - 0,3 г сахарозы и 1 - 2 г порошка купрум (II) оксида. Содержимое пробирки тщательно перемешивают, сверху смесь засыпают слоем купрум (II) оксида - примерно 1 г. В верхнюю часть пробирки (под пробку) помещают маленький кусочек ваты, на которую насыпают немного безводного сульфата меди (II). Пробирку закрывают пробкой с газоотводной трубкой и закрепляют ее в лапке штатива с небольшим наклоном в сторону пробки. Свободный конец газоотводной трубки опускаю в пробирку с известковой (или баритовой) водой так, чтобы, трубка почти касалась поверхности жидкости. Сначала нагревают всю пробирку, затем сильно нагревают ту часть, где находится реакционная смесь. Отметьте, что происходит с известковой водой. Почему изменяется цвет купрум (ΙΙ) сульфата?

Химизм процессов: C 12 H 22 O 11 +24CuO→12CO 2 +11H 2 O+24Cu

Ca(OH) 2 +CO 2 →CaCO 3 ↓+H 2 O

CuSO 4 +5H 2 O→CuSO 4 ∙ 5H 2 O

2. Проба Бейльштей на на галогены. При прокаливании органического вещества с купрум (II) оксидом происходит его окисление. Карбон превращается в карбон(ІУ) оксид, Гидроген - в воду, а галогены (кроме флуора) образуют с Купрумом летучие галогениды, которые окрашивают пламя в ярко-зеленый цвет. Реакция очень чувствительна. Однако следует иметь в виду, что и некоторые другие соли купрума, например цианиды, образующиеся при прокаливании нитргенсодержащих органических соединений (мочевины, производных пиридина, хинолина и др.), также окрашивают пламя. Медную проволоку держат за пробку и прокаливают другой конец ее (петлю) в пламени горелки до прекращения окрашивания пламени и образования на поверхности черного налета купрум(II) оксида. Остывшую петлю смачивают хлороформом, налитым в пробирку, и снова вводят в пламя горелки. Сначала пламя становится светящимся (сгорает Карбон), затем появляется интенсивное зеленое окрашивание. 2Cu+O 2 →2CuO

2CH – Cl 3 +5CuO→CuCl 2 +4CuCl+2CO 2 +H 2 O

Следует сделать контрольный опыт, используя вместо хлороформа вещество, не содержащее галоген (бензол, воду, спирт). Для очистки проволоку смачивают хлоридной кислотой и прокаливают.

II. Открытие функциональных групп. На основании предварительного анализа (физические свойства, элементный анализ) можно ориентировочно определить класс, к которому принадлежит данное исследуемое вещество. Эти предположения подтверждают качественными реакциями на функциональные группы.

1. Качественные реакции на кратные карбон - карбоновые связи. а) присоединение брома. Углеводороды, содержащие двойные и тройные связи, легко присоединяют бром:

К раствору 0,1 г (или 0,1 мл) вещества в 2 - З мл четыреххлористого карбона или хлороформа добавляют по каплям при встряхивании 5-процентный раствор брома в том же растворителе. Мгновенное исчезновение окраски брома свидетельствует о наличии кратной связи в веществе. Но раствор брома также обесцвечивается соединениями, содержащими подвижный Гидроген (фенолы, ароматические амины, третичные углеводороды). Однако при этом происходит реакция замещения с выделением гидроген бромида, присутствие которого легко обнаружить с помощью влажной бумажки синего лакмуса или конго. б) Проба с калий перманганатом . В слабощелочной среде при действии калий перманганата происходит окисление вещества с разрывом кратной связи, раствор при этом обесцвечивается, и образуется хлопьевидный осадок MnO 2 - манган (IУ) оксид. К 0,1 г (или 0,1 мл) вещества, растворенного в воде или ацетоне, добавляют по каплям при встряхивании 1-процентный раствор калий перманганата. Происходит быстрое исчезновение малиново-фиолетовой окраски, и появляется бурый осадок MnO 2 . Однако калий перманганат окисляет вещества других классов: альдегиды, многоатомные спирты, ароматические амины. При этом также обесцвечиваются растворы, но окисление протекает большей частью значительно медленнее.

2. Обнаружение ароматических систем. Ароматические соединения в отличие от алифатических соединений способны легко вступать в реакции замещения, часто образуя окрашенные соединения. Обычно для этого используют реакцию нитрования и алкилирования. Нитрование ароматических соединений. (‘Осторожно! Тяга!,) Нитрование проводят азотной кислотой или нитрующей смесью:

R – H + HNO 3 → RNO 2 + H 2 O

В пробирку помещают 0,1 г (или 0,1 мл) вещества и при непрерывном встряхивании постепенно прибавляют З мл нитрующей смеси (1 часть концентрированной нитратной кислоты и 1 часть концентрированной сульфатной кислоты). Пробирку закрывают пробкой с длинной стеклянной трубкой, которая служит обратным холодильником, и нагревают на водяной бане 5 мин при 50 0 С. Смесь выливают в стакан с 10 г измельченного льда. Если при этом выпадает твердый продукт или масло, нерастворимые в воде и отличающиеся от исходного вещества, то можно предположить присутствие ароматической системы. 3.Качественные реакции спиртов. При анализе на спирты используют реакции замещения как подвижного гидрогена в гидроксильной группе так и всей гидроксильной группы. а) Реакция с металлическим натрием. Спирты легко реагируют с натрием, образуя при этом алкоголяты, растворимые в спирте:

2 R – OH + 2 Na → 2 RONa + H 2

В пробирку помещают 0,2 - 0,3 мл безводного исследуемого вещества и осторожно добавляют маленький кусочек металлического натрия величиной с просяное зерно. Выделение газа при растворении натрия указывает на присутствие активного водорода. (Однако эту реакцию также могут давать кислоты и СН-кислоты.) б) Реакция с купрум (II) гидроксидом. В двух-, трех- и многоатомных спиртах в отличие от одноатомных спиртов растворяется свежеприготовленный купрум (II) гидроксид с образованием темно- синего раствора комплексных солей соответствующих производных (гликолятов, глицератов). В пробирку наливают несколько капель (0,3 - 0,5 мл) 3-процентного раствора купрум (ΙΙ) сульфата, а затем 1 мл 10-процентного раствора натрий гидроксида. Выпадает студенистый голубой осадок купрум (ΙΙ) гидроксида. Растворение осадка при добавлении 0,1 г исследуемого вещества и изменение цвета раствора до темно-синего подтверждают присутствие многоатомного спирта с гидроксильными группами, расположенными у соседних атомов карбона.

4. Качественные реакции фенолов. а) Реакция с ферум (III) хлоридом. Фенолы дают с ферум (III) хлоридом интенсивно окрашенные комплексные соли. Обычно появляется глубокая синяя или фиолетовая окраска. Некоторые фенолы дают зеленое или красное окрашивание, оно ярче проявляется в воде и хлороформе и хуже в спирте. В пробирку помещают несколько кристаллов (или 1 - 2 капли) исследуемого вещества в 2 мл воды или хлороформа, затем добавляют при встряхивании 1 - 2 капли 3 процентного раствора ферум (III) хлорида. В присутствии фенола появляется интенсивная фиолетовая или синяя окраска. Алифатические фенолы с ферум (ΙΙΙ) хлоридом в спирте дают более яркую окраску, чем в воде, а для фенолов характерно кроваво-красное окрашивание. б) Реакция с бромной водой. Фенолы со свободными орто- и пара -положениями в бензольном ядре легко обесцвечивают бромную воду, при этом получается осадок 2,4,6- трибромфенола

Небольшое количество исследуемого вещества встряхивают с 1 мл воды, затем прибавляют по каплям бромную воду. Происходит обесцвечивание раствора и вьпадение белого осадка.

5. Качественные реакции альдегидов. В отличие от кетонов все альдегиды легко окисляются. На этом свойстве основано открытие альдегидов, но не кетонов. а) Реакция серебряного зеркала. Все альдегиды легко восстанавливают аммиачный раствор аргентум (Ι) оксида. Кетоны не дают этой реакции:

В хорошо вымытой пробирке смешивают 1 мл раствора нитрата серебра с 1 мл разбавленного раствора натрий гидроксида. Выпавший осадок аргентум (Ι) гидроксида растворяют при добавлении 25-процентного раствора аммиака. К полученному раствору прибавляют несколько капель спиртового раствора анализируемого вещества. Пробирку помещают на водяную баню и нагревают до 50 0 - 60 0 С. Если на стенках пробирки выделяется блестящий налет металлического серебра, то это свидетельствует о наличии альдегидной группы в образце. Следует отметить, что эту реакцию могут давать также и другие легко окисляющиеся, соединения: многоатомные фенолы, дикетоны, некоторые ароматические амины. б) Реакция с фелинговой жидкостью. Альдегиды жирного ряда способны восстанавливать двухвалентный купрум до одновалентного:

Пробирку с 0,05 г вещества и З мл фелинговой жидкости нагревают З -- 5 минут на кипящей водяной бане. Появление желтого или красного осадка купрум (I) оксида подтверждает наличие альдегидной группы. б. Качественные реакции кислот. а) Определение кислотности. Водно-спиртовые растворы карбоновых кислот показывают кислую реакцию на лакмус, конго или универсальный индикатор. Каплю водно-спиртового раствора исследуемого вещества наносят на синюю влажную бумажку лакмуса, конго или универсального индикатора. При наличии кислоты индикатор меняет свой цвет: лакмус становится розовым, конго-синим, а универсальный индикатор в зависимости от кислотности - от желтого до оранжевого. Следует иметь в виду, чтосульфокислоты, нитрофенолы и некоторые другие соединения с подвижным «кислым» гидрогеном, не содержащие карбоксильной группы, могут давать также изменение цвета индикатора. б) Реакция с натрий гидрокарбонатом. При взаимодействии карбоновых кислот с натрий гидрокарбонатом происходит выделение карбон(IY) оксида: В пробирку наливают 1 - 1,5 мл насыщенного раствора натрий гидрокарбоната и добавляют 0,1 - 0,2 мл водно-спиртового раствора исследуемого вещества. Выделение пузырьков карбон(IY) оксида указывает на наличие кислоты.

RCOOH + NaHCO 3 → RCOONa + CO 2 + H 2 O

7. Качественные реакции аминов. Амины растворяются в кислотах. Многие амины (особенно алифатического ряда) обладают характерным запахом (селедочный, аммиачный и др.). Основность аминов. Алифатические амины как сильные основания способны изменять окраску таких индикаторов, как красный лакмус, фенолфталеин, универсальная индикаторная бумага. Каплю водного раствора исследуемого вещества наносят на индикаторную бумажку (лакмус, фенолфталеин, универсальная индикаторная бумага). Изменение окраски индикатора свидетельствует о присутствии аминов. В зависимости от строения амина основность его меняется в большом диапазоне. Поэтому лучше использовать универсальную индикаторную бумагу. 8. Качественные реакции полифункциональных соединений. Для качественного обнаружения бифункциональных соединений (углеводы, аминокислоты) используйте комплекс вышеописанных реакций.

C 6 H 5 -CHO + O 2 ® C 6 H 5 -CO-O-OH

Образующаяся надбензойная кислота окисляет вторую молекулу бензойного альдегида до бензойной кислоты:

C 6 H 5 -CHO + C 6 H 5 -CO-O-OH ® 2C 6 H 5 -COOH

Опыт № 34. Окисление бензойного альдегида перманганатом калия

Реактивы:

Бензойный альдегид

Раствор перманганата калия

Этиловый спирт

Ход работы:

В пробирку помещают ~3 капли бензальдегида, добавляют ~2 мл раствора перманганата калия и нагревают на водяной бане при встряхивании до исчезновения запаха альдегида. Если раствор не обесцвечивается, то окраску уничтожают несколькими каплями спирта. Раствор охлаждают. Выпадают кристаллы бензойной кислоты:

C 6 H 5 -CHO + [O] ® C 6 H 5 -COOH

Опыт № 35. Реакция окисления-восстановления бензальдегида (реакция Канниццаро)

Реактивы:

Бензойный альдегид

Спиртовой раствор гидроксида калия

Ход работы:

В пробирку к ~1 мл бензойного альдегида прибавляют ~5 мл 10%-ного спиртового раствора гидроксида калия и энергично встряхивают. При этом выделяется тепло и жидкость затвердевает.

Окислительно-восстановительная реакция бензойного альдегида в присутствии щелочи протекает по следующей схеме:

2C 6 H 5 -CHO + KOH ® C 6 H 5 -COOK + C 6 H 5 -CH 2 -OH

Образуется калиевая соль бензойной кислоты (продукт окисления бензойного альдегида) и бензиловый спирт (продукт восстановления бензойного альдегида).

Полученные кристаллы отфильтровывают и растворяют в минимальном количестве воды. При прибавлении к раствору ~1 мл 10 %-ного раствора соляной кислоты выпадает в осадок свободная бензойная кислота:

C 6 H 5 -COOK + HCl ® C 6 H 5 -COOH¯ + KCl

Бензиловый спирт находится в растворе, оставшемся после отделения кристаллов калиевой соли бензойной кислоты (раствор имеет запах бензилового спирта).

VII. КАРБОНОВЫЕ КИСЛОТЫ И ИХ ПРОИЗВОДНЫЕ

Опыт № 36. Окисление муравьиной кислоты

Реактивы:

Муравьиная кислота

Раствор 10%-ный серной кислоты

Раствор перманганата калия

Баритовая или известковая вода

Ход работы:

В пробирку с газоотводной трубкой наливают ~0,5-1 мл муравьиной кислоты, ~1 мл 10%-ного раствора серной кислоты и ~4-5 мл раствора перманганата калия. Газоотводную трубку погружают в пробирку с раствором известковой или баритовой воды. Реакционную смесь осторожно нагревают, поместив в пробирку кипятильные камешки для равномерного кипения. Раствор сначала буреет, затем обесцвечивается, выделяется углекислый газ:

5H-COOH + 2KMnO 4 + 3H 2 SO 4 ® 5HO-CO-OH + K 2 SO 4 + 2MnSO 4 + 3H 2 O

HO-CO-OH ® CO 2 ­ + H 2 O

Опыт № 37. Восстановление аммиачного раствора гидроксида серебра муравьиной кислотой

Реактивы:

Аммиачный раствор гидроксида серебра (реактив Толленса)

Муравьиная кислота

Похожие публикации