Новая школа - Образовательный портал

Фотонный кристалл. Фотонные кристаллы для чайников. Фотонный кристалл из оксида титана

2014 г.

Фотонные кристаллы

Фотонные кристаллы (ФК) представляют собой структуры, характеризующиеся периодическим изменением диэлектрической проницаемости в пространстве. Оптические свойства ФК сильно отличаются от оптических свойств сплошных сред. Распространение излучения внутри фотонного кристалла благодаря периодичности среды становится похожим на движение электрона внутри обычного кристалла под действием периодического потенциала. В результате электромагнитные волны в фотонных кристаллах имеют зонный спектр и координатную зависимость, аналогичную блоховским волнам электронов в обычных кристаллах. При определенных условиях в зонной структуре ФК образуются щели, аналогично запрещенным электронным зонам в естественных кристаллах. В зависимости от конкретных свойств (материала элементов, их размера и периода решетки) в спектре ФК могут образовываться как полностью запрещенные по частоте зоны, для которых распространение излучения невозможно независимо от его поляризации и направления, так и частично запрещенные (стоп–зоны), в которых распространение возможно лишь в выделенных направлениях.

Фотонные кристаллы интересны как с фундаментальной точки зрения, так и для многочисленных приложений. На основе фотонных кристаллов создаются и разрабатываются оптические фильтры, волноводы (в частности, в волоконно-оптических линиях связи), устройства, позволяющие осуществлять управление тепловым излучением, на основе фотонных кристаллов были предложены конструкции лазеров с пониженным порогом накачки.

Помимо изменения спектров отражения, прохождения и поглощения металло-диэлектрические фотонные кристаллы обладают специфической плотностью фотонных состояний. Измененная плотность состояний может существенным образом влиять на время жизни возбужденного состояния атома или молекулы, помещенных внутрь фотонного кристалла, и, следовательно, менять характер люминесценции. Например, если частота перехода в молекуле-индикаторе, находящейся в фотонном кристалле, попадет в запрещенную зону, то люминесценция на этой частоте будет подавлена.

ФК делятся на три типа: одномерные, двумерные и трехмерные.

Одно-, двух- и трехмерные фотонные кристаллы. Разные цвета соответствуют материалам с разными значениями диэлектрической проницаемости.

Одномерными являются ФК с чередующимися слоями, сделанными из разных материалов.

Электронный снимок одномерного ФК, используемого в лазере как брэгговское многослойное зеркало.

Двумерные ФК могут иметь более разнообразные геометрии. К ним, например, можно отнести массивы бесконечных по длине цилиндров (их поперечный размер много меньше продольного) или периодические системы цилиндрических отверстий.

Электронные снимки, двумерного прямого и обратного ФК с треугольной решеткой.

Структуры трехмерных ФК весьма разнообразны. Наиболее распространенными в этой категории являются искусственные опалы - упорядоченные системы сферических рассеивателей. Различают два основных типа опалов: прямые и обратные (inverse) опалы. Переход от прямого опала к обратному опалу осуществляется заменой всех сферических элементов полостями (как правило, воздушными), в то время как пространство между этими полостями заполняется каким–либо материалом.

Ниже представлена поверхность ФК, представляющего собой прямой опал с кубической решеткой на основе самоорганизованных сферических микрочастиц полистирола.

Внутренняя поверхность ФК с кубической решеткой на основе самоорганизованных сферических микрочастиц полистирола.

Следующая структура представляет собой инверсный опал, синтезированный в результате многостадийного химического процесса: самосборки полимерных сферических частиц, пропитки пустот полученного материала веществом и удалением полимерной матрицы путем химического травления.

Поверхность кварцевого инверсного опала. Фотография получена с помощью сканирующей электронной микроскопии.

Еще одним типом трехмерных ФК являются структуры типа «поленница» (logpiles), образованные скрещенными, как правило, под прямым углом прямоугольными параллелепипедами.

Электронная фотография ФК из металлических параллелепипедов.

Показано, что в зависимости от полярности включения фотодиодов в состав резонатора происходит частотный сдвиг отклика вверх или вниз по частоте при увеличении освещенности. Предложено использовать систему связанных кольцевых резонаторов для увеличения чувствительности исследуемых резонаторов к величине освещенности. Продемонстрировано, что для фиксированного расстояния между связанными резонаторами происходит частотное расщепление отклика системы на четную (яркую) и нечетную (темную) моды при помощи света. Мы уверены, что предложенный метод создания перестраиваемых кольцевых резонаторов позволит создать новый класс метаматериалов, управляемых светом.

Работа поддержана Министерством образования Российской Федерации (соглашения № 14.В37.21.1176 и № 14.В37.21.1283), Фондом «Династия», Фондом РФФИ (проект № 13-02-00411), стипендией Президента Российской Федерации молодым ученым и аспирантам 2012.

Литература

1. Linden S., Enkrich C., Wegener M., Zhou J., Koschny T., Soukoulis C.M. Magnetic Response of Metamaterials at 100 Terahertz // Science. - 2004. - V. 306. - P. 1351-1353.

2. Shelby R., Smith D.R. and Schultz S. Experimental Verification of a Negative Index of Refraction // Science. - 2001. - V. 292. - P. 77-79.

3. Gansel J.K., Thiel M., Rill M.S., Decker M., Bade K., Saile V., von Freymann G., Linden S., Wegener M. Gold Helix Photonic Metamaterial as Broadband Circular Polarizer // Science. - 2009. - V. 325. - P. 15131515.

4. Belov P.A., Hao Y. Subwavelength imaging at optical frequencies using a transmission device formed by a periodic layered metal-dielectric structure operating in the canalization regime // Physical Review B. - 2006. - V. 73. - P. 113110.

5. Leonhardti U. Optical conformal mapping // Science. - 2006. - V. 312. - P. 1777-1780.

6. Кившарь Ю.С., Орлов А.А. Перестраиваемые и нелинейные метаматериалы // Научно-технический вестник информационных технологий, механики и оптики. - 2012. - № 3 (79). - C. 1-10.

7. Shadrivov I.V., Morrison S.K. and Kivshar Yu.S. Tunable split-ring resonators for nonlinear negative-index metamaterials // Opt. Express. - 2006. - V. 14. - P. 9344-9349.

8. Kapitanova P.V., Maslovski S.I., Shadrivov I.V., Voroshilov P.M., Filonov D.S., Belov P.A. and Kivshar Y.S. Controlling split-ring resonators with light // Applied Physics Letters. - V. 99. - P. 251914 (1-3).

9. Marques R., Martin F. and Sorolla M. Metamaterials with Negative Parameters: Theory, Design and Microwave Applications. - NJ: Wiley&Sons, Inc., Hoboken, 2008. - 315 p.

Капитонова Полина Вячеславовна - Санкт-Петербургский национальный исследовательский университет

информационных технологий, механики и оптики, кандидат технических наук, научный сотрудник, [email protected], [email protected]

Белов Павел Александрович - Санкт-Петербургский национальный исследовательский университет

информационных технологий, механики и оптики, доктор физ.-мат. наук, главный научный сотрудник, [email protected]

АНАЛИЗ ЗОННОЙ СТРУКТУРЫ ФОТОННОГО КРИСТАЛЛА С КРАТНЫМИ ОПТИЧЕСКИМИ ДЛИНАМИ СЛОЕВ ДЛЯ ТЕРАГЕРЦОВОГО ДИАПАЗОНА

А.Х. Денисултанов, М.К. Ходзицкий

Из дисперсионного уравнения для бесконечного фотонного кристалла выведены формулы для точного расчета границ запрещенных зон, ширины запрещенных зон и точного положения центров запрещенных зон фотонных кристаллов с кратными оптическими длинами слоев в двухслойной ячейке для терагерцового диапазона частот от 0,1 до 1 ТГц. Формулы проверены при численном моделировании фотонных кристаллов методом матриц передачи и методом конечных разностей временной области для первой, второй и третьей кратностей оптических длин в двухслойной ячейке фотонного кристалла. Формулы для второй кратности подтверждены экспериментально. Ключевые слова: фотонный кристалл, запрещенная зона, граничные частоты, кратные оптические длины, матрица передачи, метаматериал.

Введение

В последние годы исследование искусственных сред с необычными свойствами («метаматериа-лов») привлекает интерес достаточно большого круга ученых и инженеров, что обусловливается перспективным использованием этих сред в промышленной и военной индустрии при разработке новых типов фильтров, фазосдвигателей, суперлинз, маскирующих покрытий и т.д. . Одним из видов мета-материалов является фотонный кристалл, который представляет собой слоистую структуру с периодиче-

ски изменяющимся показателем преломления . Фотонные кристаллы (ФК) активно используются в лазерных технологиях, средствах коммуникации, фильтрации, благодаря таким уникальным свойствам, как наличие зонной структуры в спектре, сверхразрешение, эффект суперпризмы и т.д. . Особый интерес проявляется к исследованию фотонных кристаллов в терагерцовом (ТГц) диапазоне для спектроскопических, томографических исследований новых типов материалов и биообъектов . Исследователями уже разработаны двумерные и трехмерные ФК для ТГц диапазона частот и изучены их характеристики , но, к сожалению, на данный момент нет точных формул для расчета характеристик зонной структуры фотонного кристалла, таких как ширина запрещенной зоны, центр запрещенной зоны, границы запрещенной зоны . Целью настоящей работы является получение формул для расчета характеристик одномерного фотонного кристалла для первой, второй и третьей кратностей оптических длин в двухслойной ячейке ФК и проверка этих формул с помощью численного моделирования методом матриц передачи и методом конечных разностей во временной области, а также эксперимента в ТГц диапазоне частот.

Аналитическое и численное моделирование

Рассмотрим бесконечный фотонный кристалл с показателями преломления слоев в двухслойной ячейке п1 и п2 и толщинами слоев й1 и й2 соответственно. Данная структура возбуждается линейно-поляризованной поперечной электрической волной (ТЕ-волной). Волновой вектор к направлен перпендикулярно слоям ФК (рис. 1). Дисперсионное уравнение для такого ФК, полученное с использованием теоремы Флоке и условия непрерывности тангенциальных компонент поля на границе слоев, имеет следующий вид :

С08[кв(йх + й2)] = со8[кг й^]х со$[к2 й2]-0,5)

с бт[кг ё1] х бт[кг й2

где кв - блоховское волновое число; к^ =

ли преломления; й1, й2 - толщины слоев.

2 л х / х п1

; / - частота; пг, п2 - показате-

Рис. 1. Рассматриваемая слоисто-периодическая структура

Л. и Л 1 ! I х. ] л!/ л Пил! л «

и " и | Г ¡4 1 ! 1) 1 1 N V и | 1 У " 11

0,1 0,2 0,3 0,4 0,5 0,6

Частота/ ТГц

Рис. 2. Частотная дисперсия комплексного блоховского волнового числа

Дисперсия комплексного блоховского волнового числа, полученная с использованием уравнения (1), показана на рис. 2. Как видно из рис. 2, на границах запрещенных зон аргумент косинуса кв (й1 + й2) будет принимать значения либо 0, либо п . Следовательно, исходя из этого условия, можно рассчи-

тать значения граничных частот, ширины запрещенных зон и центры запрещенных зон фотонного кристалла. Однако для фотонного кристалла с некратными оптическими длинами слоев внутри двухслойной ячейки данные формулы могут быть получены только в неявном виде. Для получения формул в явном виде нужно использовать кратные оптические длины: пхёх = п2ё2; пхёх = 2хп2ё2; пхёх = 3хп2ё2... . В работе были рассмотрены формулы для 1-й, 2-й и 3-й кратности.

Для фотонного кристалла первой кратности (пхёх = п2ё2) формулы граничных частот, ширины

запрещенной зоны и центра запрещенной зоны имеют следующий вид:

(/п 1 Л (/п «и 1 Л

0,256-1,5 . „ агссо81---I + 2лт

а/ = /1 -/2; /33 = /+/2-; /рз =

/ 2а; /2 = я(т +1)

0,256-1, 5 . „, 1Ч -агссо81 ----- | + 2л(т +1)

где /1 и /2 - низкочастотная и высокочастотная границы запрещенной зоны соответственно; А/ - ширина запрещенной зоны; /зз - центр запрещенной зоны; с - скорость света; / - центр разрешенной

о пх п2 зоны 6 = - +-;

Для ФК с параметрами слоев пх = 2,9; п2 = 1,445; ёх = 540 мкм; ё2 = 1084 мкм для второй запрещенной зоны в диапазоне 0,1-1 ТГц имеют место следующие параметры зонной структуры: /1 = 0,1332 ТГц; /2 = 0,1541 ТГц; А/ = 0,0209 ТГц; /зз = 0,1437 ТГц.

Для ФК, оптические длины слоев которого связаны равенством пхёх = 2п2ё2, получены следующие формулы для параметров зонной структуры:

4+в+У в2-4 6 + 3в-4в2 -4

4 + в-V в2 - 4 6 + 3в + ^в2 - 4

2 + в -V в2 - 4

2ят х с агссоБ

В-#^4 2 + в + 4 в2 - 4

В-#^4 2 + в + л/в2 - 4

4 + в-Vв2 -4 6 + 3в + 4в2 - 4

4 + в + Ув2 - 4 6 + 3в-4в2 -4

где (/1 и /11), (/2 и /21), (/3 и /31), (/4 и /41) - низкочастотная и высокочастотная границы запрещен-

ных зон с номерами (4т+1), (4т+2), (4т+3), (4т+4) соответственно; с - скорость света; Р= - + -;

т = 0,1,2,.... Ширина запрещенной зоны рассчитывается как А/ = /-/х; центр запрещенной зоны

, / + /х. й /зз = ^ ; /рз - центр разрешенной зоны.

Для ФК с параметрами пх = 2,9; п2 = 1,445; ёх = 540 мкм; ё2 = 541,87 мкм для второй запрещенной зоны в диапазоне 0,1-1 ТГц имеем

/2 = 0,116 ТГц; /2х = 0,14 ТГц; А/ = 0,024 ТГц; /зз = 0,128 ТГц.

Для фотонного кристалла, оптические длины которого связаны равенством пхёх = 3п2ё2, получены следующие формулы для параметров зонной структуры:

1 -0,5ß + ^/2,25ß2 -ß-7 3 + 2,5ß-^/ 2,25ß2-ß-7

1 -0,5ß-^2,25ß2 -ß-7 3 + 2,5ß + V 2,25ß2-ß-7

1 -0,5ß-J2,25ß2 -ß-7 3 + 2,5ß + yl2,25ß2 - ß - 7

1 - 0,5ß + 72,25ß2 - ß - 7 3 + 2,5ß-sj2,25ß2 -ß-7

где (/1 и /11), (/2 и /2), (/3 и /) - низкочастотная и высокочастотная границы запрещенных зон с

номерами (3т+1), (3т+2), (3т+3) соответственно; с - скорость света; р = - + -; т = 0,1,2,.... Ширина

запрещенной зоны рассчитывается как Д/ = / - /1; центр запрещенной зоны /зз =

разрешенной зоны.

Для ФК с параметрами п1 = 2,9; п2 = 1,445; = 540 мкм; й2 = 361,24 мкм для второй запрещенной зоны в диапазоне 0,1-1 ТГц имеем

/2 = 0,1283 ТГц; = 0,1591 ТГц; Д/ = 0,0308 ТГц; /зз = 0,1437 ТГц.

Для моделирования ФК конечной длины нужно использовать метод матриц передачи , который позволяет рассчитать значение электромагнитного поля волны, проходящей через фотонный кристалл, в произвольной точке 2 слоя. Матрица передачи для одного слоя имеет следующий вид:

cos(k0 x n x p x sin(k0

: z x cos 0) x n x z x cos 0)

(-i / p) x sin(k0 x n x z x cos 0)

где k0 = -; p = - cos 0 ; n = ; z - координата на оси Oz; 0 - угол падения волны на первый слой.

Используя метод матриц передачи, в математическом пакете MATLAB была построена зонная структура фотонного кристалла для оптических длин слоев в двухслойной ячейке 1-й, 2-й и 3-й кратно-стей), в ТГц диапазоне частот (для 0=0) с 10 элементарными ячейками с параметрами слоев, указанными выше (рис. 3).

Как видно из рис. 3, в спектре пропускания ФК 1-й, 2-й и 3-й кратности выпадают запрещенные зоны, кратные двум, трем, четырем соответственно, по сравнению с зонной структурой ФК с некратными оптическими длинами слоев внутри элементарной ячейки. Для всех трех случаев кратности относительная погрешность вычислений параметров зонной структуры конечного ФК не превышает 1% по сравнению с формулами для бесконечного ФК (ширина запрещенной зоны рассчитывалась на уровне 0,5 коэффициента пропускания для конечного ФК).

Также структура одномерного ФК была рассчитана методом конечных разностей во временной области с помощью программного пакета трехмерного моделирования CST Microwave Studio (рис. 4). Видно такое же поведение зонной структуры конечного ФК, что и для спектров пропускания, полученного методом матриц передачи. Относительная погрешность вычислений параметров зонной структуры конечного ФК в данном пакете моделирования не превышает 3% по сравнению с формулами для бесконечного ФК.

Цж.М"."ш ЩШШ Ш Щ"ДЦ Щ

пШшиЩШ) щщм

пхёх=3п2ё2 Частота / ТГц

Рис. 3. Зонная структура фотонного кристалла для трех кратностей, оптических длин слоев в двухслойной ячейке в ТГц диапазоне частот (цифры указывают номер запрещенной зоны, стрелки - выпадающие

запрещенные зоны)

Я -е -е т о

пхёх=2п2ё2 -ДА/ ут1

пхёх=3п2ё2 Частота, ТГц

Рис. 4. Трехмерная модель ФК в ОЭТ (а) и коэффициент пропускания ФК для трех кратностей (б)

Экспериментальная часть

Случай 2-й кратности был проверен экспериментально методом непрерывной ТГц спектроскопии в диапазоне 0,1-1 ТГц . Был использован метод смешения частот инфракрасного излучения на фото-проводящей (ФП) антенне для генерации ТГц излучения. Вторая ФП антенна была использована в качестве приемника. Между излучающей и принимающей ФП антенной устанавливался собранный ФК (рис. 5).

Исследованный фотонный кристалл имеет следующие параметры: количество бислойных ячеек -3; показатели преломления слоев - пх = 2,9 и п2 = 1,445 ; толщины слоев - ёх = 540 мкм и ё2 = 520 мкм (ё2 на 21 мкм меньше, чем для случая идеальной 2-й кратности). На рис. 5 показано сравнение экспериментального и теоретического спектра для 4 и 5 запрещенных зон. Как видно из экспериментального графика, так же как и для моделирования, наблюдается выпадение запрещенной зоны, кратной трем, по сравнению с зонной структурой ФК с некратными оптическими длинами слоев внутри элементарной ячейки. Небольшое несоответствие положения центров запрещенных зон в экспериментальном и теоре-

тическом спектре связано с отличием толщины слоев тефлона в эксперименте от идеальной 2-й кратности.

1,0 0,9 0,8 0,7 0,6 0,5 0,4 0,3

0,3 0,35 0,4 0,45 0,5 Частота, ТГц

Эксперимент

Моделирование

Рис. 5. Фотография установки, фотография макета фотонного кристалла (а) и сравнительный график экспериментального и теоретического коэффициента пропускания ФК с тремя элементарными

ячейками (б)

Заключение

Таким образом, были получены точные формулы для расчета параметров зонной структуры (ширина запрещенной зоны, границы запрещенной зоны и центр запрещенной зоны) одномерных фотонных кристаллов с кратными оптическими длинами слоев внутри двухслойной элементарной ячейки для случая TE-волны с волновым вектором, перпендикулярным плоскостям слоев фотонного кристалла. Было продемонстрировано для фотонного кристалла 1-й, 2-й и 3-й кратности исчезновение запрещенных зон, кратным двум, трем, четырем соответственно, по сравнению с зонной структурой фотонных кристаллов с некратными оптическими длинами слоев внутри элементарной ячейки. Формулы для 1-й, 2-й и 3-й кратностей были проверены с помощью метода матриц передачи и трехмерного численного моделирования методом конечных разностей во временной области. Случай 2-й кратности был проверен в эксперименте в ТГц диапазоне частот от 0,1 до 1 ТГц. Полученные формулы могут быть использованы для разработки широкополосных фильтров на основе фотонных кристаллов для промышленного, военного и медицинского применения без необходимости моделирования зонной структуры фотонного кристалла в различных математических пакетах.

Работа была частично поддержана грантом № 14.132.21.1421 в рамках реализации Федеральной целевой программы «Научные и научно-педагогические кадры инновационной России» на 2009-2013 гг.

Литература

1. Вендик И.Б., Вендик О.Г. Метаматериалы и их применение в технике сверхвысоких частот (Обзор) // Журнал технической физики. - СПбГЭТУ «ЛЭТИ». - 2013. - Т. 83. - Вып. 1. - С. 3-26.

2. Возианова А.В., Ходзицкий М.К. Маскирующее покрытие на основе спиральных резонаторов // Научно-технический вестник информационных технологий, механики и оптики. - 2012. - № 4 (80). -С. 28-34.

3. Терехов Ю.Е., Ходзицкий М.К., Белокопытов Г.В. Характеристики метапленок для терагерцового диапазона частот при масштабировании геометрических параметров // Научно-технический вестник информационных технологий, механики и оптики. - 2013. - № 1 (83). - С. 55-60.

4. Yablonovitch E. Inhibited Spontaneous Emission in Solid-State Physics and Electronics // Physical Review Letters. - 1987. - V. 58. - № 20. - P. 2059-2062.

5. Figotin A., Kuchment P. Band-Gap Structure of Spectra of Periodic Dielectric and Acoustic Media. II. Two-Dimensional Photonic Crystals // SIAM Journal on Applied Mathematics. - 1996. - V. 56. - № 6. - P. 1561-1620.

6. Smolyaninov Igor I., Davis Christopher C. Super-resolution optical microscopy based on photonic crystal materials // Physical review B. - 2005. - V. 72. - P. 085442.

7. Kosaka Hideo, Kawashima Takayuki, Tomita Akihisa. Superprism phenomena in photonic crystals // Physical review B. - 1998. - V. 58. - № 16. - P. 10096-10099.

8. Kurt Hamza, Erim Muhammed Necip, Erim Nur. Various photonic crystal bio-sensor configurations based on optical surface modes // Department of Electrical and Electronics Engineering. - 2012. - V. 165. - № 1. - P. 68-75.

9. Ozbay E., Michel E., Tuttle G., Biswas R., Sigalas M., and Ho K.M. Micromachined millimeter-wave photonic band-gap crystals // Appl. Phys. Lett. - 1994. - V. 64. - № 16. - P. 2059-2061.

10. Jin C., Cheng B., Li Z., Zhang D., Li L.M., Zhang Z.Q. Two dimensional metallic photonic crystal in the THz range // Opt. Commun. - 1999. - V. 166. - № 9. - P. 9-13.

11. Nusinsky Inna and Hardy Amos A. Band-gap analysis of one-dimensional photonic crystals and conditions for gap closing // Physical review B. - 2006. - V. 73. - P. 125104.

12. Басс Ф.Г., Булгаков А.А., Тетервов А.П. Высокочастотные свойства полупроводников со сверхрешетками. - М.: Наука. Гл. ред. физ.-мат. лит., 1989. - 288 с.

13. Борн М., Вольф Э. Основы оптики. - М.: Наука. Гл. ред. физ.-мат. лит., 1973. - 733 c.

14. Gregory I.S., Tribe W.R., Baker C. Continuous-wave terahertz system with a 60 dB dynamic range // Applied Phisics Letters. - 2005. - V. 86. - P. 204104.

Денисултанов Алауди Хожбаудиевич

Ходзицкий Михаил Константинович

Санкт-Петербургский национальный исследовательский университет информационных технологий, механики и оптики, студент, [email protected]

Санкт-Петербургский национальный исследовательский университет информационных технологий, механики и оптики, кандидат физ.-мат. наук, ассистент, [email protected]

Рис. 2. Схематическое представление одномерного фотонного кристалла.

1. одномерные, в которых коэффициент преломления периодически изменяется в одном пространственном направлении как показано на Рис. 2. На этом рисунке символом Λ обозначен период изменения коэффициента преломления, и - показатели преломления двух материалов (но в общем случае может присутствовать любое число материалов). Такие фотонные кристаллы состоят из параллельных друг другу слоев различных материалов с разными коэффициентами преломления и могут проявлять свои свойства в одном пространственном направлении, перпендикулярном слоям.

Рис. 3. Схематическое представление двумерного фотонного кристалла.

2. двухмерные, в которых коэффициент преломления периодически изменяется в двух пространственных направлениях как показано на Рис. 3. На этом рисунке фотонный кристалл создан прямоугольными областями с коэффициентом преломления , которые находятся в среде с коэффициентом преломления . При этом, области с коэффициентом преломления упорядочены в двумерной кубической решетке . Такие фотонные кристаллы могут проявлять свои свойства в двух пространственных направлениях, и форма областей с коэффициентом преломления не ограничивается прямоугольниками, как на рисунке, а может быть любой (окружности, эллипсы, произвольная и т. д.). Кристаллическая решётка , в которой упорядочены эти области, также может быть другой, а не только кубической, как на приведённом рисунке.

3. трёхмерные, в которых коэффициент преломления периодически изменяется в трёх пространственных направлениях. Такие фотонные кристаллы могут проявлять свои свойства в трёх пространственных направлениях, и можно их представить как массив объёмных областей (сфер, кубов и т. д.), упорядоченных в трёхмерной кристаллической решётке.

Как и электрические среды в зависимости от ширины запрещённых и разрешённых зон, фотонные кристаллы можно разделить на проводники - способные проводить свет на большие расстояния с малыми потерями, диэлектрики - практически идеальные зеркала, полупроводники - вещества способные, например, выборочно отражать фотоны определённой длины волны и сверхпроводники , в которых благодаря коллективным явлениям фотоны способны распространяться практически на неограниченные расстояния.

Также различают резонансные и нерезонансные фотонные кристаллы . Резонансные фотонные кристаллы отличаются от нерезонансных тем, что в них используются материалы, у которых диэлектрическая проницаемость (или коэффициент преломления) как функция частоты имеет полюс на некоторой резонансной частоте.

Любая неоднородность в фотонном кристалле (например, отсутствие одного или нескольких квадратов на Рис. 3, их больший или меньший размер относительно квадратов оригинального фотонного кристалла и т. д.) называются дефектом фотонного кристалла. В таких областях часто сосредотачивается электромагнитное поле , что используется в микрорезонаторах и волноводах , построенных на основе фотонных кристаллов.

Методы теоретического исследования фотонных кристаллов, численные методы и программное обеспечение

Фотонные кристаллы позволяют проводить манипуляции с электромагнитными волнами оптического диапазона, причём характеристические размеры фотонных кристаллов часто близки к величине длины волны. Поэтому к ним не применимы методы лучевой теории, а используется волновая теория и решение уравнений Максвелла . Уравнения Максвелла могут быть решены аналитически и численно, но именно численные методы решения используются для исследования свойств фотонных кристаллов наиболее часто по причине их доступности и лёгкой подстройки под решаемые задачи.

Уместно также упомянуть, что используется два основных подхода к рассмотрению свойств фотонных кристаллов - методы для временной области (которые позволяют получить решение задачи в зависимости от временной переменной), и методы для частотной области (которые предоставляют решение задачи в виде функции от частоты) .

Методы для временной области удобны в отношении динамических задач, которые предусматривают временную зависимость электромагнитного поля от времени. Они также могут быть использованы для расчёта зонных структур фотонных кристаллов, однако практически сложно бывает выявить положение зон в выходных данных таких методов. Кроме того, при расчёте зонных диаграмм фотонных кристаллов используется преобразование Фурье , частотное разрешение которого, зависит от общего времени расчёта метода. То есть для получения большего разрешения в зонной диаграмме нужно потратить больше времени на выполнение расчётов. Есть ещё и другая проблема - временной шаг таких методов должен быть пропорционален размеру пространственной сетки метода. Требование увеличения частотного разрешения зонных диаграмм требует уменьшения временного шага, а следовательно и размера пространственной сетки, увеличения числа итераций, требуемой оперативной памяти компьютера и времени расчёта. Такие методы реализованы в известных коммерческих пакетах моделирования Comsol Multiphysics (используется метод конечных элементов для решения уравнений Максвелла) , RSOFT Fullwave (использует метод конечных разностей) , самостоятельно разработанные исследователями программные коды для методов конечных элементов и разностей и др.

Методы для частотной области удобны прежде всего тем, что решение уравнений Максвелла происходит сразу для стационарной системы и непосредственно из решения определяются частоты оптических мод системы, это позволяет быстрее рассчитывать зонные диаграммы фотонных кристаллов, чем с использованием методов для временной области. К их достоинствам можно отнести число итераций, которое практически не зависит от разрешения пространственной сетки метода и то, что ошибка метода численно спадает экспоненциально с числом проведённых итераций. Недостатками метода являются необходимость расчёта собственных частот оптических мод системы в низкочастотной области для того, чтобы рассчитать частоты в более высокочастотной области, и естественно, невозможность описания динамики развития оптических колебаний в системе. Данные методы реализованы в бесплатном пакете программ MPB и коммерческом пакете . Оба упомянутых программных пакета не могут рассчитывать зонные диаграммы фотонных кристаллов, в которых один или несколько материалов имеют комплексные значения коэффициента преломления. Для исследования таких фотонных кристаллов используется комбинация двух пакетов компании RSOFT - BandSolve и FullWAVE, либо используется метод возмущения

Безусловно, теоретические исследования фотонных кристаллов не ограничиваются только расчётом зонных диаграмм, а также требуют и знаний о стационарных процессах при распространении электромагнитных волн через фотонные кристаллы. Примером может служить задача исследования спектра пропускания фотонных кристаллов. Для таких задач можно использовать оба упомянутых выше подхода исходя из удобства и их доступности, а также методы матрицы переноса излучения , программа для расчёта спекторов пропускания и отражения фотонных кристаллов использующая данный метод , программный пакет pdetool который входит в состав пакета Matlab и упомянутый уже выше пакет Comsol Multiphysics.

Теория фотонных запрещённых зон

Как выше уже отмечалось, фотонные кристаллы позволяют получить разрешённые и запрещённые зоны для энергий фотонов, аналогично полупроводниковым материалам , в которых существуют разрешённые и запрещённые зоны для энергий носителей заряда. В литературном источнике появление запрещённых зон объясняется тем, что при определённых условиях, интенсивности электрического поля стоячих волн фотонного кристалла с частотами близкими к частоте запрещённой зоны, смещаются в разные области фотонного кристалла. Так, интенсивности поля низкочастотных волн концентрируется в областях с большим коэффициентом преломления, а интенсивности поля высокочастотных - в областях с меньшим коэффициентом преломления. В работе встречается другое описание природы запрещённых зон в фотонных кристаллах: «фотонными кристаллами принято называть среды, у которых диэлектрическая проницаемость периодически меняется в пространстве с периодом, допускающим брэгговскую дифракцию света».

Если излучение с частотой запрещённой зоны было сгенерировано внутри такого фотонного кристалла, то оно не может распространяться в нём, если же такое излучение посылается извне, то оно просто отражается от фотонного кристалла. Одномерные фотонные кристаллы, позволяют получить запрещённые зоны и фильтрующие свойства для излучения, распространяющегося в одном направлении, перпендикулярном слоям материалов, показанных на Рис. 2. Двухмерные фотонные кристаллы могут иметь запрещённые зоны для излучения, распространяющегося как в одном, двух направлениях, так и во всех направлениях данного фотонного кристалла, которые лежат в плоскости Рис. 3. Трёхмерные фотонные кристаллы могут иметь запрещённые зоны как в одном, нескольких или всех направлениях. Запрещённые зоны существуют для всех направлений в фотонном кристалле при большой разнице показателей преломления материалов, из которых состоит фотонный кристалл, определённых формах областей с разными показателями преломления и определённой кристаллической симметрии .

Число запрещённых зон, их положение и ширина в спектре зависит как от геометрических параметров фотонного кристалла (размер областей с разным показателем преломления, их форма, кристаллическая решётка, в которой они упорядочены) так и от показателей преломления. Поэтому, запрещённые зоны могут быть перестраиваемыми, например вследствие применения нелинейных материалов с выраженным эффектом Керра , вследствие изменения размеров областей с разным показателем преломления или же вследствие изменения показателей преломления под воздействием внешних полей .

Рис. 5. Зонная диаграмма для энергий фотонов (ТЕ поляризация).

Рис. 6. Зонная диаграмма для энергий фотонов (ТМ поляризация).

Рассмотрим зонные диаграммы фотонного кристалла, показанного на Рис. 4. Этот двумерный фотонный кристалл состоит из двух чередующихся в плоскости материалов - арсенида галлия GaAs (основной материал, показатель преломления n=3,53, области чёрного цвета на рисунке) и воздуха (которым наполнены цилиндрические отверстия, обозначены белым цветом, n=1). Отверстия имеют диаметр и упорядочены в гексагональной кристаллической решётке с периодом (расстоянием между центрами соседних цилиндров) . В рассматриваемом фотонном кристалле отношение радиуса отверстий к периоду равно . Рассмотрим зонные диаграммы для ТЕ (вектор электрического поля направлен параллельно осям цилиндров) и ТМ (вектор магнитного поля направлен параллельно осям цилиндров) показанные на Рис. 5 и 6, которые были рассчитаны для данного фотонного кристалла при помощи бесплатной программы MPB . По оси X отложены волновые векторы в фотонном кристалле, по оси Y отложена нормированная частота, ( - длина волны в вакууме) соответствующая энергетическим состояниям. Синие и красные сплошные кривые на этих рисунках представляют собой энергетические состояния в данном фотонном кристалле для ТЕ и ТМ поляризованных волн соответственно. Голубые и розовые области показывают запрещённые зоны для фотонов в данном фотонном кристалле. Чёрные прерывистые линии - это так называемые световые линии (или световой конус) данного фотонного кристалла . Одна из основных областей применения данных фотонных кристаллов - оптические волноводы, и световая линия определяет область, внутри которой располагаются волноводные моды волноводов, построенных с помощью таких фотонных кристаллов, обладающие малыми потерями. Другими словами, световая линия определяет зону интересующих нас энергетических состояний данного фотонного кристалла. Первое, на что стоит обратить внимание - данный фотонный кристалл имеет две запрещённых зоны для ТЕ-поляризованных волн и три широких запрещённых зоны для ТМ-поляризованных волн. Второе - запрещённые зоны для ТЕ и ТМ-поляризованных волн, лежащие в области малых значений нормированной частоты , перекрываются, а значит, данный фотонный кристалл обладает полной запрещённой зоной в области перекрытия запрещённых зон ТЕ и ТМ волн не только во всех направлениях, но и для волн любой поляризации (ТЕ или ТМ).

Рис. 7. Спектр отражения рассматриваемого фотонного кристалла (ТЕ поляризация).

Рис. 8. Спектр отражения рассматриваемого фотонного кристалла (ТМ поляризация).

Из приведённых зависимостей мы можем определить геометрические параметры фотонного кристалла, первая запрещённая зона которого с значением нормированной частоты , приходится на длину волны нм. Период фотонного кристалла равен нм, радиус отверстий равен нм. Рис. 7 и 8 показывают спектры коэффициента отражения фотонного кристалла с параметрами, определёнными выше для ТЕ и ТМ волн соответственно. Спектры были рассчитаны при помощи программы Translight , при этом предполагалось что данный фотонный кристалл состоит из 8 пар слоёв отверстий и излучение распространяется в направлении Γ-Κ. Из приведённых зависимостей мы можем видеть наиболее известное свойство фотонных кристаллов - электромагнитные волны с собственными частотами, соответствующими запрещённым зонам фотонного кристалла (Рис.5 и 6), характеризуются коэффициентом отражения, близким к единице и подвергаются практически полному отражению от данного фотонного кристалла. Электромагнитные волны с частотами вне запрещённых зон данного фотонного кристалла характеризуются меньшими коэффициентами отражения от фотонного кристалла и полностью или частично проходят через него.

Изготовление фотонных кристаллов

В настоящее время существует множество методов изготовления фотонных кристаллов, и новые методы продолжают появляться. Некоторые методы больше подходят для формирования одномерных фотонных кристаллов, другие удобны в отношении двумерных, третьи применимы чаще к трёхмерным фотонным кристаллам, четвёртые используются при изготовлении фотонных кристаллов на других оптических устройствах и т. д. Рассмотрим наиболее известные из этих методов.

Методы, использующие самопроизвольное формирование фотонных кристаллов

При самопроизвольном формировании фотонных кристаллов используются коллоидальные частицы (чаще всего используются монодисперсные силиконовые или полистереновые частицы, но и другие материалы постепенно становятся доступными для использования по мере разработки технологических методов их получения ), которые находятся в жидкости и по мере испарения жидкости осаждаются в некотором объёме . По мере их осаждения друг на друга, они формируют трёхмерный фотонный кристалл, и упорядочиваются преимущественно в гранецентрированную или гексагональную кристаллические решетки. Этот метод достаточно медленный, формирование фотонного кристалла может занять недели.

Другой метод самопроизвольного формирования фотонных кристаллов, называемый сотовым методом, предусматривает фильтрование жидкости, в которой находятся частицы через маленькие поры. Этот метод представлен в работах , позволяет сформировать фотонный кристалл со скоростью, определённой скоростью течения жидкости через поры, но при высыхании такого кристалла образуются дефекты в кристалле .

Выше уже отмечалось, что в большинстве случаев требуется большой контраст коэффициента преломления в фотонном кристалле для получения запрещённых фотонных зон во всех направлениях. Упомянутые выше методы самопроизвольного формирования фотонного кристалла чаще всего применялись для осаждения сферических коллоидальных частиц силикона, коэффициент преломления которого мал, а значит мал и контраст коэффициента преломления. Для увеличения этого контраста, используется дополнительные технологические шаги, на которых сначала пространство между частицами заполняется материалом с большим коэффициентом преломления, а затем частицы вытравливаются . Пошаговый метод формирования инверсного опала описан в методическом указании по выполнению лабораторной работы .

Методы травления

Голографические методы

Голографические методы создания фотонных кристаллов базируются на применении принципов голографии , для формирования периодического изменения коэффициента преломления в пространственных направлениях. Для этого используется интерференция двух или более когерентных волн, которая создает периодическое распределение интенсивности электрического поля . Интерференция двух волн позволяет создавать одномерные фотонные кристаллы, трёх и более лучей - двухмерные и трёхмерные фотонные кристаллы .

Другие методы создания фотонных кристаллов

Однофотонная фотолитография и двухфотонная фотолитография позволяют создавать трёхмерные фотонные кристаллы с разрешением 200нм и использует свойство некоторых материалов, таких как полимеры , которые чувствительны к одно- и двухфотонному облучению и могут изменять свои свойства под воздействием этого излучения . Литография при помощи пучка электронов является дорогим, но высокоточным методом для изготовления двумерных фотонных кристаллов В этом методе, фоторезист, который меняет свои свойства под действием пучка электронов облучается пучком в определённых местах для формирования пространственной маски. После облучения, часть фоторезиста смывается, а оставшаяся часть используется как маска для травления в последующем технологическом цикле. Максимальное разрешение этого метода - 10нм . Литография при помощи пучка ионов похожа по своему принципу, только вместо пучка электронов используется пучок ионов. Преимущества литографии при помощи пучка ионов над литографией при помощи пучка электронов заключаются в том, что фоторезист более чувствителен к пучкам ионов, чем электронов и отсутствует «эффект близости» («proximity effect»), который ограничивает минимально возможный размер области при литографии при помощи пучка электронов .

Применение

Распределённый брэгговский отражатель является уже широко используемым и известным примером одномерного фотонного кристалла.

С фотонными кристаллами связывают будущее современной электроники . В данный момент идёт интенсивное изучение свойств фотонных кристаллов, разработка теоретических методов их исследования, разработка и исследование различных устройств с фотонными кристаллами, практическая реализация теоретически предсказанных эффектов в фотонных кристаллах, и предполагается, что:

Исследовательские группы в мире

Исследования фотонных кристаллов проводятся в множестве лабораторий институтов и компаний, занимающихся электроникой. Например:

  • Московский государственный технический университет имени Н. Э. Баумана
  • Московский государственный университет имени М. В. Ломоносова
  • Институт радиотехники и электроники РАН
  • Днепропетровский национальный университет имени Олеся Гончара
  • Сумской Государственный университет

Источники

  1. стр. VI в книге Photonic Crystals, H. Benisty, V. Berger, J.-M. Gerard, D. Maystre, A. Tchelnokov, Springer 2005.
  2. Е. Л. Ивченко, А. Н. Поддубный, "Резонансные трёхмерные фотонные кристаллы, "Физика твёрдого тела, 2006, том 48, вып. 3, стр. 540-547.
  3. В. А. Кособукин, "Фотонные кристаллы, «Окно в Микромир», No. 4, 2002.
  4. Photonic Crystals: Periodic Surprises in Electromagnetism
  5. CNews, Фотонные кристаллы первыми изобрели бабочки.
  6. S. Kinoshita, S. Yoshioka and K. Kawagoe "Mechanisms of structural colour in the Morpho butterfly: cooperation of regularity and irregularity in an iridescent scale, " Proc. R. Soc. Lond. B, Vol. 269, 2002, pp. 1417-1421.
  7. http://ab-initio.mit.edu/wiki/index.php/MPB_Introduction Steven Johnson, MPB manual.
  8. Пакет программ для решения физических задач.
  9. http://www.rsoftdesign.com/products/component_design/FullWAVE/ Пакет программ для решения электродинамических задач RSOFT Fullwave.
  10. Программный пакет для расчёта зонных диаграмм фотонных кристаллов MIT Photonic Bands.
  11. Пакет программ для расчёта зонных диаграмм фотонных кристаллов RSOFT BandSolve.
  12. A. Reisinger, "Characteristics of optical guided modes in lossy waveguides, " Appl. Opt., Vol. 12, 1073, p. 1015.
  13. M.H. Eghlidi, K. Mehrany, and B. Rashidian, "Improved differential-transfer-matrix method for inhomogeneous one-dimensional photonic crystals, " J. Opt. Soc. Am. B, Vol. 23, No. 7, 2006, pp. 1451-1459.
  14. Программа Translight, разработчики: Andrew L. Reynolds, the Photonic Band Gap Materials Research Group within the Optoelectronics Research Group of the Department of Electronics and Electrical Engineering, the University of Glasgow and the initial program originators from Imperial College, London, Professor J.B. Pendry, Professor P.M. Bell, Dr. A.J. Ward and Dr. L. Martin Moreno.
  15. Матлаб - язык технических расчётов.
  16. стр. 40, J.D. Joannopoulos, R.D. Meade, and J.N. Winn, Photonic Crystals: Molding the Flow of Light, Princeton Univ. Press, 1995.
  17. стр. 241, P.N. Prasad, Nanophotonics, John Wiley and Sons, 2004.
  18. стр. 246, P.N. Prasad, Nanophotonics, John Wiley and Sons, 2004.
  19. D. Vujic and S. John, "Pulse reshaping in photonic crystal waveguides and microcavities with Kerr nonlinearity: Critical issues for all-optical switching, " Physical Review A, Vol. 72, 2005, p. 013807.
  20. http://www3.interscience.wiley.com/cgi-bin/fulltext/114286507/PDFSTART J. Ge, Y. Hu, and Y. Yin, "Highly Tunable Superparamagnetic Colloidal Photonic Crystals, " Angewandte Chemie International Edition, Vol. 46, No. 39, pp. 7428-7431.
  21. A. Figotin, Y.A. Godin, and I. Vitebsky, "Two-dimensional tunable photonic crystals, " Physical Review B, Vol. 57, 1998, p. 2841.
  22. MIT Photonic-Bands package, developed by Steven G. Johnson at MIT along with the Joannopoulos Ab Initio Physics group.
  23. http://www.elettra.trieste.it/experiments/beamlines/lilit/htdocs/people/luca/tesihtml/node14.html Fabrication and Characterization of Photonic Band Gap Materials.
  24. P. Lalanne, «Electromagnetic Analysis of Photonic Crystal Waveguides Operating Above the Light Cone, IEEE J. of Quentum Electronics, Vol. 38, No. 7, 2002, pp. 800-804.»
  25. A. Pucci, M. Bernabo, P. Elvati, L.I. Meza, F. Galembeck, C.A. de P. Leite, N. Tirelli, and G. Ruggeriab, "Photoinduced formation of gold nanoparticles into vinyl alcohol based polymers, " J. Mater. Chem., Vol. 16, 2006, pp. 1058-1066.
  26. A. Reinholdt, R. Detemple, A.L. Stepanov, T.E. Weirich, and U. Kreibig, "Novel nanoparticle matter: ZrN-nanoparticles, " Applied Physics B: Lasers and Optics, Vol. 77, 2003, pp. 681-686.
  27. L. Maedler, W.J. Stark, and S.E. Pratsinisa, «Simultaneous deposition of Au nanoparticles during flame synthesis of TiO2 and SiO2,» J. Mater. Res., Vol. 18, No. 1, 2003, pp. 115-120.
  28. K.K. Akurati, R. Dittmann, A. Vital, U. Klotz, P. Hug, T. Graule, and M. Winterer, "Silica-based composite and mixed-oxide nanoparticles from atmospheric pressure flame synthesis, " Journal of Nanoparticle Research, Vol. 8, 2006, pp. 379-393.
  29. стр. 252, P.N. Prasad, Nanophotonics, John Wiley and Sons, 2004
  30. A.-P. Hynninen, J.H.J. Thijssen, E.C.M. Vermolen, M. Dijkstra, and A. van Blaaderen, "Self-assembly route for photonic crystals with a bandgap in the visible region, " Nature Materials 6, 2007, pp. 202-205.
  31. X. Ma, W. Shi, Z. Yan, and B. Shen, "Fabrication of silica/zinc oxide core-shell colloidal photonic crystals, " Applied Physics B: Lasers and Optics, Vol. 88, 2007, pp. 245-248.
  32. S.H. Park and Y. Xia, "Assembly of Mesoscale Particles over Large Areas and Its Application in Fabricating Tunable Optical Filters, " Langmuir, Vol. 23, 1999, pp. 266-273.
  33. S.H. Park, B. Gates, Y. Xia, "A Three-Dimensional Photonic Crystal Operating in the Visible Region, " Advanced Materials, 1999, Vol. 11, pp. 466-469.
  34. стр. 252, P.N. Prasad, Nanophotonics, John Wiley and Sons, 2004.
  35. Y.A. Vlasov, X.-Z. Bo, J.C. Sturm, and D.J. Norris, "On-chip natural assembly of silicon photonic bandgap crystals, " Nature, Vol. 414, No. 6861, p. 289.
  36. стр. 254, P.N. Prasad, Nanophotonics, John Wiley and Sons, 2004.
  37. M. Cai, R. Zong, B. Li, and J. Zhou, "Synthesis of inverse opal polymer films, " Journal of Materials Science Letters, Vol. 22, No. 18, 2003, pp. 1295-1297.
  38. R. Schroden, N. Balakrishan, «Inverse opal photonic crystals. A laboratory guide», University of Minnesota.
  39. Virtual cleanroom, Georgia Institute of Technology.
  40. P. Yao, G.J. Schneider, D.W. Prather, E. D. Wetzel, and D.J. O’Brien, "Fabrication of three-dimensional photonic crystals with multilayer photolithography, " Optics Express, Vol. 13, No. 7, 2005, pp. 2370-2376.

В последнее десятилетие развитие микроэлектроники затормозилось, поскольку уже практически достигнуты ограничения по быстродействию стандартных полупроводниковых устройств. Все большее число исследований посвящается разработке альтернативных полупроводниковой электронике областей - это спинтроника, микроэлектроника со сверхпроводящими элементами, фотоника и некоторые другие.

Новый принцип передачи и обработки информации с помощью светового, а не электрического сигнала может ускорить наступление нового этапа информационного века.

От простых кристаллов к фотонным

Основой электронных устройств будущего могут стать фотонные кристаллы - это синтетические упорядоченные материалы, в которых диэлектрическая проницаемость периодически меняется внутри структуры. В кристаллической решетке традиционного полупроводника регулярность, периодичность расположения атомов приводит к образованию так называемой зонной энергетической структуры - с разрешенными и запрещенными зонами. Электрон, энергия которого попадает в разрешенную зону, может передвигаться по кристаллу, а электрон с энергией в запрещенной зоне оказывается «запертым».

По аналогии с обычным кристаллом возникла идея кристалла фотонного. В нем периодичность диэлектрической проницаемости обуславливает возникновение фотонных зон, в частности, запрещенной, в пределах которой распространение света с определенной длиной волны подавлено. То есть, будучи прозрачными для широкого спектра электромагнитного излучения, фотонные кристаллы не пропускают свет с выделенной длиной волны (равной удвоенному периоду структуры по длине оптического пути).

Фотонные кристаллы могут иметь различную размерность. Одномерные (1D) кристаллы представляют собой многослойную структуру из чередующихся слоев с разными показателями преломления. Двумерные фотонные кристаллы (2D) можно представить в виде периодической структуры из стержней с разной диэлектрической проницаемостью. Первые синтетические прообразы фотонных кристаллов были трехмерными и созданы еще в начале 1990-х годов сотрудниками исследовательского центра Bell Labs (США). Для получения периодической решетки в диэлектрическом материале американские ученые высверливали цилиндрические отверстия таким образом, чтобы получить трехмерную сеть пустот. Для того, чтобы материал стал фотонным кристаллом, его диэлектрическая проницаемость была модулирована с периодом в 1 сантиметр во всех трех измерениях.

Природными аналогами фотонных кристаллов являются перламутровые покрытия раковин (1D), усики морской мыши, многощетинкового червя (2D), крылья африканской бабочки парусника и полудрагоценные камни, например, опал (3D).

Но и сегодня, даже с помощью самых современных и дорогостоящих методов электронной литографии и анизотропного ионного травления, с трудом удается изготовить бездефектные трехмерные фотонные кристаллы с толщиной более 10 структурных ячеек.

Фотонные кристаллы должны найти широкое применение в фотонных интегральных технологиях, которые в перспективе заменят электрические интегральные схемы в компьютерах. При передаче информации с использованием фотонов вместо электронов резко сократится энергопотребление, увеличатся тактовые частоты и скорость передачи информации.

Фотонный кристалл из оксида титана

Оксид титана TiO 2 обладает набором уникальных характеристик, таких как высокий показатель преломления, химическая стабильность и низкая токсичность, что делает его наиболее перспективным материалом для создания одномерных фотонных кристаллов. Если рассматривать фотонные кристаллы для солнечных батарей, то здесь оксид титана выигрывает из-за своих полупроводниковых свойств. Ранее было продемонстрировано увеличение КПД солнечных элементов при использовании слоя полупроводника с периодической структурой фотонного кристалла, в том числе фотонных кристаллов из оксида титана.

Но пока применение фотонных кристаллов на основе диоксида титана ограничивается отсутствием воспроизводимой и недорогой технологии их создания.

Сотрудники химического факультета и факультета наук о материалах МГУ - Нина Саполетова, Сергей Кушнир и Кирилл Напольский - усовершенствовали синтез одномерных фотонных кристаллов на основе пористых пленок оксида титана.

«Анодирование (электрохимическое окисление) вентильных металлов, в том числе алюминия и титана, является эффективным методом получения пористых оксидных пленок с каналами нанометрового размера», - пояснил руководитель группы электрохимического наноструктурирования, кандидат химических наук Кирилл Напольский.

Анодирование обычно проводят в двухэлектродной электрохимической ячейке. В раствор электролита опускают две металлические пластины - катод и анод, и подают электрическое напряжение. На катоде выделяется водород, на аноде происходит электрохимическое окисление металла. Если периодически менять прикладываемое к ячейке напряжение, то на аноде формируется пористая пленка с заданной по толщине пористостью.

Эффективный показатель преломления будет модулироваться, если диаметр пор будет периодически меняться внутри структуры. Разработанные ранее методики анодирования титана не позволяли получать материалы с высокой степенью периодичности структуры. Химики из МГУ разработали новый способ анодирования металла с модуляцией напряжения в зависимости от заряда анодирования, который позволяет с высокой точностью создавать пористые анодные оксиды металлов. Возможности новой методики химики продемонстрировали на примере одномерных фотонных кристаллов из анодного оксида титана.

В результате изменения напряжения анодирования по синусоидальному закону в диапазоне 40–60 Вольт ученые получили нанотрубки анодного оксида титана с постоянным внешним диаметром и периодически изменяющимся внутренним диаметром (см. рисунок).

«Применяемые ранее методики анодирования не позволяли получать материалы с высокой степенью периодичности структуры. Мы разработали новую методику, ключевым составляющим которой является in situ (непосредственно во время синтеза) измерение заряда анодирования, что позволяет с высокой точность контролировать толщину слоев с различной пористостью в формируемой оксидной пленке», - пояснил один из авторов работы, кандидат химических наук Сергей Кушнир.

Разработанная методика упростит создание новых материалов с модулированной структурой на основе анодных оксидов металлов. «Если в качестве практического использования методики рассматривать применение в солнечных батареях фотонных кристаллов из анодного оксида титана, то еще предстоит провести систематическое исследование влияния структурных параметров таких фотонных кристаллов на эффективность преобразования света в солнечных батареях», - уточнил Сергей Кушнир.

Похожие публикации