Новая школа - Образовательный портал

Закон распределения случайной величины формула. Случайные величины. Их законы распределения. Одно из представлений интеграла вероятностей

Случайной называется величина, которая в результате испытания может принять то или иное возможное значение, неизвестное заранее. Различают дискретные и непрерывные случайные величины.
Если множество возможных значений случайной величины конечно или образуют бесконечную числовую последовательность, то такая случайная величина называется дискретной (примеры 3.1, 3.3, 3.4).
Случайная величина, множество значений которой заполняет сплошь некоторый числовой промежуток, называется непрерывной (пример 3.2). Заметим, что дискретные и непрерывные величины не исчерпывают все типы случайных величин.
Если случайная величина не относится ни к дискретным, ни к непрерывным случайным величинам, то ее называют смешанной .
Очевидно, что для полной характеристики дискретной случайной величины мало знать ее значения. Необходимо им поставить в соответствие вероятности.
Соответствие между всеми возможными значениями дискретной случайной величины и их вероятностями называется законом распределения данной случайной величины.
Простейшая формой задания закона распределения дискретной случайной величины является таблица, в которой перечислены возможные значения случайной величины (обычно в порядке возрастания) и соответствующие им вероятности:

Такая таблица называется рядом распределения. Допустим, что число возможных значений случайной величины конечно: х 1 , х 2 , …, х n . При одном испытании случайная величина принимает одно и только одно постоянное значение. Поэтому события Х = х i (i = 1, 2, … , n ) образуют полную группу попарно независимых событий. Следовательно, р 1 + р 2 + … + р n = 1.
Можно закон распределения изобразить и графически, откладывая на оси абсцисс возможные значения случайной величины, а на оси ординат – соответствующие вероятности. Для большей выразительности полученные точки соединяются прямолинейными отрезками. Получающая при этом фигура называется многоугольником (полигоном) распределения.
Существует ряд законов распределения:

· Биномиальное

· Пуассона

· Нормальное(Гауса)

· Показательное(экспоненциальное)

· Равномерное

Биномиальное распределение случайной величины


n – количество испытаний

Пуассоновское распределение.
Ситуация, когда вероятность появления события в каждом испытании близка к 0 (такие события называются редкими явлениями), а количество испытаний велико. Вероятность того, что в n независимых испытаниях событие наступит m раз, приближенно равна:

n – количество испытаний
m – предполагаемое наступление желаемого события
p- вероятность наступления события в одном испытании
Пример: Установлено, что при транспортировке в вагоне более 5000 изделий портится в среднем одно изделие. Найти вероятность того, что испортится три изделия. (0,06).




Математическим ожиданием

Дисперсия






Показательное (экспоненциальное) распределение

- интенсивность (среднее число событий в единицу времени)

Непрерывная случайная величина X, функция плотности которой задается данным выражением, называется случайной величиной, имеющей показательное, или экспоненциальное, распределение.

Величина срока службы различных устройств и времени безотказной работы отдельных элементов этих устройств при выполнении определенных условий обычно подчиняется показательному распределению. Другими словами, величина промежутка времени между появлениями двух последовательных редких событий подчиняется зачастую показательному распределению.

Как видно из формулы, показательное распределение определяется только одним параметром . Эта особенность показательного распределения указывает на его преимущество по сравнению с распределениями, зависящими от большего числа параметров.

График функций показательного распределения имеют вид:

Вероятность попадания случайной величины X в интервал :

,математическое ожидание

, дисперсия

Среднеквадратическое отклонение

Таким образом, для показательного распределения характерно, что среднее квадратическое отклонение численно равно математическому ожиданию.

Равномерное распределение
Равномерное распределение вероятностей является простейшим и может быть как дискретным, так и непрерывным. Дискретное равномерное распределение – это такое распределение, для которого вероятность каждого из значений СВ одна и та же, то есть:


где N – количество возможных значений СВ.

Распределение вероятностей непрерывной CВ Х, принимающие все свои значения из отрезка [а;b] называется равномерным, если ее плотность вероятности на этом отрезке постоянна, а вне его равна нулю:

11.Функция распределения и её свойства.

Функцией распределения случайной величины X называется вероятность того, что она примет значение меньшее, чем аргумент функции x :

F (x )=P{X <x }.

Геометрически функция распределения интерпретируется как вероятность того, что случайная точка X попадет левее заданной точки X. Из геометрической интерпретации наглядно можно вывести основные свойства функции распределения.

1. F (-¥) = 0.

2. F (+¥) = 1.

3. F (x ) – неубывающая функция своего аргумента, т.е. при x 1 < x 2

F (x 1) £ F (x 2).

4. P(α£ X < β) = F (β) - F (α), для "[α,β[ÎR. (5.4)

Вероятность того, что случайная величина Х в результате опыта попадет на участок от α до β (включая α) равна приращению функции распределени я на этом участке.

Таким образом, функция распределения F(x)любой случайной величины есть неубывающая функция своего аргумента, значения которой заключены между 0 и 1: 0≤F(x)≤1, причем F(-∞)=0, F(+∞)=1.

12. Функция распределения дискретной и непрерывной случайной величины.

Функция распределения дискретной случайной величины

Если x - дискретная случайная величина, принимающая значения x 1 < x 2 < … < x i < … с вероятностями p 1 < p 2 < … < p i < …, то таблица вида

называется распределением дискретной случайной величины .

Функция распределения случайной величины, с таким распределением, имеет вид

У дискретной случайной величины функция распределения ступенчатая.

Множество значений непрерывной случайной величины несчетно и обычно представляет собой некоторый промежуток конечный или бесконечный.

Случайная величина x(w),заданная в вероятностном пространстве {W, S,P}, называется непрерывной (абсолютно непрерывной) W, если существует неотрицательная функция такая, что при любых х функцию распределения Fx(x) можно представить в виде интеграла

13. Плотность распределения непрерывной случайной величины.

Функция называется функцией плотности распределения вероятностей .

Из определения вытекают свойства функции плотности распределения :

1. Плотность распределения неотрицательна: .

2. Интеграл по всей числовой прямой от плотности распределения вероятностей равен единице:

3. В точках непрерывности плотность распределения равна производной функции распределения: .

4. Плотность распределения определяет закон распределения случайной величины, т. к. определяет вероятность попадания случайной величины на интервал :

5.Вероятность того, что непрерывная случайная величина примет конкретное значение равна нулю: . Поэтому справедливы следующие равенства:

График функции плотности распределения называется кривой распределения , и площадь, ограниченная кривой распределения и осью абсцисс, равна единице. Тогда геометрически значение функции распределения Fx(x) в точке х0 есть площадь, ограниченная кривой распределения и осью абсцисс и лежащая левее точки х0.

14. Связь функции распределения и плотности распределения. Интегральная формула полной вероятности.

Зная плотность распределения F(X) , можно найти функцию распределения F(X) по формуле

.

Действительно, F(X) = P(X < X ) = P(-∞ < X < X) .

Следовательно,

.

.

Таким образом, Зная плотность распределения, можно найти функцию распределения. Разумеется, по известной функции распределения можно найти плотность распределения , а именно:

F(X) = F"(X).
15. Числовые характеристики случайных величин.

Закон распределения полностью описывает случайную величину с

вероятностной точки зрения. Но часто достаточно указать только отдель-

ные числовые параметры, которые позволяют в сжатой форме выразить

наиболее существенные черты распределения. Такие параметры называ-

ются числовыми характеристиками случайной величины.

Среди числовых характеристик можно выделить характеристики по-

ложения, т. е. некие средние, ориентировочные значения случайной вели-

чины, около которых группируются ее возможные значения.

К числовым характеристикам относятся:

· Математическое ожидание

· Дисперсия

· Медиана

· Моменты

· Квантиль

· Асимметрия

· Эксцентриситет

16.Математическое ожидание случайной величины и его свойства.

Математическое ожидание - число, вокруг которого сосредоточены значения случайной величины. Математическое ожидание случайной величины x обозначается M x .

Математическое ожидание дискретной случайной величины x , имеющей распределение

называется величина , если число значений случайной величины конечно.

Если число значений случайной величины счетно, то . При этом, если ряд в правой части равенства расходится, то говорят, что случайная величина x не имеет математического ожидания.

Математическое ожидание непрерывной случайной величины с плотностью вероятностей p x (x ) вычисляется по формуле . При этом, если интеграл в правой части равенства расходится, то говорят, что случайная величина x не имеет математического ожидания.

Если случайная величина h является функцией случайной величины x , h = f (x ), то

.

Аналогичные формулы справедливы для функций дискретной случайной величины:

, .

Основные свойства математического ожидания:

· математическое ожидание константы равно этой константе, M c=c ;

· математическое ожидание - линейный функционал на пространстве случайных величин, т.е. для любых двух случайных величин x , h и произвольных постоянных a и b справедливо: M (ax + bh ) = a M (x)+ b M (h);

· математическое ожидание произведения двух независимых случайных величин равно произведению их математических ожиданий, т.е. M (x h) = M (x)M (h).

17.Диспрсия случайной величины и её свойства.

Дисперсия случайной величины характеризует меру разброса случайной величины около ее математического ожидания.

Если случайная величина x имеет математическое ожидание M x , то дисперсией случайной величины x называется величина D x = M (x - M x ) 2 .

Легко показать, что D x = M (x - M x ) 2 = M x 2 - M (x) 2 .

Эта универсальная формула одинаково хорошо применима как для дискретных случайных величин, так и для непрерывных. Величина M x 2 >для дискретных и непрерывных случайных величин соответственно вычисляется по формулам

, .

Для определения меры разброса значений случайной величины часто используетсясреднеквадратичное отклонение ,связанное с дисперсией соотношением .

Основные свойства дисперсии:

· дисперсия любой случайной величины неотрицательна, D x 0;

· дисперсия константы равна нулю, D c =0;

· для произвольной константы D (cx ) = c 2 D (x);

· дисперсия суммы двух независимых случайных величинравна сумме их дисперсий: D (x ±h ) = D (x) + D (h).

18. Момент порядка k случайной величины, абсолютный и центральный моменты.

Начальным моментом k-го порядка случайной величины x называется математическое ожидание k -й степени случайной величины x , т.е. a k = M x k .

Центральным моментом k-го порядка случайной величины x называется величина m k , определяемая формулой m k = M (x - M x ) k .

Заметим, что математическое ожидание случайной величины - начальный момент первого порядка, a 1 = M x , а дисперсия - центральный момент второго порядка,

a 2 = M x 2 = M (x - M x ) 2 =D x .

Существуют формулы, позволяющие выразить центральные моменты случайной величины через ее начальные моменты, например:

m 2 =a 2 -a 1 2 , m 3 = a 3 - 3a 2 a 1 + 2a 1 3 .

Если плотность распределения вероятностей непрерывной случайной величины симметрична относительно прямой x = M x , то все ее центральные моменты нечетного порядка равны нулю.

АБСОЛЮТНЫЙ МОМЕНТ

случайной величин ы X - математич. ожидание Обычное обозначение А. м. таким образом,

Число r наз. порядком А. м. Если F(х).- функция распределения X, то

и, напр., если распределение Xимеет плотность p(х), то

19. Мода и Модой

случайной величины X называют ее наиболее вероятное значение, т. е. то,

для которого вероятность pi

или плотность распределения f (x) дости-

гают максимума. Моду обычно обозначают через Mx

Если многоугольник вероятности или плотность распределения достигают максимума в

нескольких точках, то такие распределения называют полимодальнымимедиана случайной величины.

Медианой непрерывной случайной величины X назы-

вается такое ее значение хm , для которого

20. Квантиль уровня x распределения случайной величины.

-кванти́ль случайной величины с функцией распределения - это любое число удовлетворяющее двум условиям:

2)

Заметим, что данные условия эквивалентны следующим:

Если - непрерывная строго монотонная функция, то существует единственный квантиль любого порядка который однозначно определяется из уравнения и, следовательно, выражается через функцию, обратную к функции распределения:

Кроме указанной ситуации, когда уравнение имеет единственное решение (которое и дает соответствующий квантиль), возможны также две других:

§ если указанное уравнение не имеет решений , то это означает, что существует единственная точка в которой функция распределения имеет разрыв, которая удовлетворяет данному определению и является квантилем порядка . Для этой точки выполнены соотношения: и (первое неравенство строгое, а второе может быть как строгим, так и обращаться в равенство).

§ если уравнение имеет более одного решения , то все его решения образуют интервал, на котором функция распределения постоянна. В качестве квантиля порядка может быть взята любая точка этого интервала. Содержательные выводы, в которых участвует квантиль, от этого существенно не изменятся, поскольку вероятность попадания случайной величины в данный интервал равна нулю.

21.Асимметрия и эксцентриситет распределения случайной величины.

Асимметрия

В теории вероятностей и в математической статистике в качестве меры асимметрии распределения является коэффициент асимметрии, который определяется формулой ,

где m 3 - центральный момент третьего порядка, - среднеквадратичное отклонение.

Нормальное распределение наиболее часто используется в теории вероятностей и в математической статистике, поэтому график плотности вероятностей нормального распределения стал своего рода эталоном, с которым сравнивают другие распределения. Одним из параметров, определяющих отличие распределения случайной величины x , от нормального распределения, является эксцесс.

Эксцесс g случайной величины x определяется равенством .

У нормального распределения, естественно, g = 0. Если g (x) > 0, то это означает, что график плотности вероятностей p x (x ) сильнее “заострен”, чем у нормального распределения, если жеg (x) < 0, то “заостренность” графика p x (x ) меньше, чем у нормального распределения.

22. Биномиальный закон распределения.

P – вероятность наступления события в одном испытании.
q – вероятность не наступления события в одном испытании q = (1-p)
n – количество испытаний
k – предполагаемое количество наступления желаемого события
Формула Бернулли, позволяет вычислить вероятность того, что событие появится в n испытаниях ровно k раз.

23. Нормальный закон распределения случайной величины. Теория Лапласа-Ляпунова.
Нормальное (гаусовское) распределение
Это основной закон теории вероятностей. В пределе все законы стремятся к нормальным законам распределения. Сумма бесконечного числа случайных величин, распределенных по любым законам, в итоге приобретает нормальный закон распределения.

Непрерывная случайная величина Х называется распределенной по нормальному закону, если ее плотность распределения равна:

Математическим ожиданием дискретной случайной величины называют сумму произведений возможных значений случайной величины на вероятности их появления

Дисперсия - для оценки степени разброса (отклонения) какого-то показателя от его среднего значения используются понятия дисперсии.

Дисперсия выборки или выборочная дисперсия – это мера изменчивости переменной. Дисперсия вычисляется по формуле:

где х - выборочное среднее, N - число наблюдений в выборке. Дисперсия меняется от нуля до бесконечности. Крайнее значение 0 означает отсутствие изменчивости, когда значения переменной постоянны. - среднеквадратическое отклонение случайной величины (квадратный корень из дисперсии.)

График функции нормального распределения, как видно из рисунка, имеет вид куполообразной кривой, называемой
Гауссовой, точка максимума имеет координаты Значит, эта ордината убывает с возрастанием значения (кривая «сжимается» к оси Ох) и возрастает с убыванием значения (кривая «растягивается» в положительном направлении оси Оу). Изменение значений параметра u (при неизменном значении ) не влияет на форму кривой, а лишь перемещает кривую вдоль оси Ох. Нормальное распределение с параметрами =0 и =1 называется нормированным. Функция распределения случайной величины в этом случае будет иметь вид:

Для =0, =1 график принимает вид:

Эта кривая при =0, =1 получила статус стандарта, ее называют единичной нормальной кривой, то есть любые собранные данные стремятся преобразовать так, чтобы кривая их распределения была максимально близка к этой стандартной кривой.

Нормализованную кривую изобрели для решения задач теории вероятности, но оказалось на практике, что она отлично аппроксимирует распределение частот при большом числе наблюдений для множества переменных

Пусть x 1 , x 2 , …, x n , …- неограниченная последовательность независимых случайных величин с математическими ожиданиями m 1 , m 2 , …, m n , … и дисперсиями s 1 2 , s 2 2 , …, s n 2 … . Обозначим , и .

Введение

Теория вероятностей является одним из классических разделов математики. Она имеет длительную историю. Основы этого раздела науки были заложены великими математиками. Назову, например, Ферма, Бернулли, Паскаля. Позднее развитие теории вероятностей определились в работах многих ученых. Большой вклад в теорию вероятностей внесли ученые нашей страны: П.Л.Чебышев, А.М.Ляпунов, А.А.Марков, А.Н.Колмогоров. Вероятностные и статистические методы в настоящее время глубоко проникли в приложения. Они используются в физике, технике, экономке, биологии и медицине. Особенно возросла их роль в связи с развитием вычислительной техники.

Например, для изучения физических явлений производят наблюдения или опыты. Их результаты обычно регистрируют в виде значений некоторых наблюдаемых величин. При повторении опытов мы обнаруживаем разброс их результатов. Например, повторяя измерения одной и той же величины одним и тем же прибором при сохранении определенных условий (температура, влажность и т.п.), мы получаем результаты, которые хоть немного, но все же отличаются друг от друга. Даже многократные измерения не дают возможности точно предсказать результат следующего измерения. В этом смысле говорят, что результат измерения есть величина случайная. Еще более наглядным примером случайной величины может служить номер выигрышного билета в лотерее. Можно привести много других примеров случайных величин. Все же и в мире случайностей обнаруживаются определенные закономерности. Математический аппарат для изучения таких закономерностей и дает теория вероятностей. Таким образом, теория вероятностей занимается математическим анализом случайных событий и связанных с ними случайных величин.

1. Случайные величины

Понятие случайной величины является основным в теории вероятностей и ее приложениях. Случайными величинами, например, являются число выпавших очков при однократном бросании игральной кости, число распавшихся атомов радия за данный промежуток времени, число вызовов на телефонной станции за некоторый промежуток времени, отклонение от номинала некоторого размера детали при правильно налаженном технологическом процессе и т. д.

Таким образом, случайной величиной называется величина, которая в результате опыта может принимать то или иное значение, причем заранее известно какое именно.

Случайные величины можно разделить на две категории.

Дискретной случайной величиной называется такая величина, которая в результате опыта может принимать определенные значения с определенной вероятностью, образующие счетное множество (множество, элементы которого могут быть занумерованы).

Это множество может быть как конечным, так и бесконечным.

Например, количество выстрелов до первого попадания в цель является дискретной случайной величиной, т.к. эта величина может принимать и бесконечное, хотя и счетное количество значений.

Непрерывной случайной величиной называется такая величина, которая может принимать любые значения из некоторого конечного или бесконечного промежутка.

Очевидно, что число возможных значений непрерывной случайной величины бесконечно.

Для задания случайной величины недостаточно просто указать ее значение, необходимо также указать вероятность этого значения.

2. Равномерное распределение

Пусть сегмент оси Ox есть шкала некоторого прибора. Допустим, что вероятность попадания указателя в некоторый отрезок шкалы пропорциональна длине этого отрезка и не зависит от места отрезка на шкале. Отметка указателя прибора есть случайная величина

могущая принять любое значение из сегмента . Поэтому и ( < ) - две любые отметки на шкале, то согласно условию имеем - коэффициент пропорциональности, не зависящий от и , а разность , - длина сегмента . Так как при =a и =b имеем , то , откуда .

Таким образом

(1)

Теперь легко найти функцию F(x) распределения вероятностей случайной величины

. Если , то не принимает значений, меньших a. Пусть теперь . По аксиоме сложения вероятностей . Согласно формуле (1), в которой принимаем , имеем , то при получаем

Наконец, если

, то , так как значения лежит на сегменте и, следовательно, не превосходят b . Итак, приходим к следующей функции распределения:

График функции

представлен на рис. 1.

Плотность распределения вероятностей найдем по формуле. Если

или , то . Если , то

Таким образом,

(2)

График функции

изображен на рис. 2. Заметим, что в точках a и b функция терпит разрыв.

Величина, плотность распределения которой задана формулой (2), называется равномерно распределенной случайной величиной.

3. Биномиальное распределение

Биномиальное распределение в теории вероятностей - распределение количества «успехов» в последовательности из n независимых случайных экспериментов, таких что вероятность «успеха» в каждом из них равна p .

- конечная последовательность независимых случайных величин с распределением Бернулли, то есть

Построим случайную величину Y .

Плотность нормального распределения имеет следующий вид:

где a - центр распределения вероятностей или математическое ожидание данной случайной величины, т. е.

среднеквадратическое отклонение данной случайной величины.

На практике исчисляются соответствующие статистические оценки. Так, оценкой для математического ожидания будет средняя величина:

где количество данных в рассматриваемом статистическом массиве.

Математическое ожидание есть то теоретическое значение данной случайной величины, к которому стремится средняя величина при неограниченном увеличении количества данных.

Среднеквадратичное отклонение:

В логистике то или иное значение величины оценивается значением

при этом оценивается коэффициент вариации:

На рисунке 4 представлен график нормального распределения вероятностей.

Рисунок 4- Нормальный закон распределения вероятностей

Плотность экспоненциального закона распределения вероятностей имеет следующий вид:

где основание натурального логарифма.

Экспоненциальный закон описывает временные параметры случайных логистических процессов. Под экспоненциальный закон попадают следующие случайные величины:

1) время обслуживания покупателей;

2) время погрузки-выгрузки транспортных средств;

3) время, затрачиваемое на выполнение прочих логистических операций

4) интервал между заявками, приходящими на обслуживание.

Особенностью экспоненциального закона является то, что он определяется одним параметром. При этом

где среднее значение исследуемого временного параметра.

Для величин, подчиняющихся экспоненциальному закону, математическое ожидание М и среднеквадратическое значение равны между собой:

На рисунке 5 представлен график экспоненциального закона.

Рисунок 5- Экспоненциальный закон распределения вероятностей

Биномиальный закон распределения вероятностей

Биноминальный закон распределения вероятностей выражается формулой:

Данный закон определяет вероятности наступления событий из общего числа событий

где вероятность наступления одного события из данной группы событий;

вероятность ненаступления указанного события,

Величина количество сочетаний из по , определяется по формуле:

Для вычисления числа сочетаний используется равенство:

При биноминальном распределении наивероятнейшее число событий равно:

Сравнение законов распределения вероятностей. Критерий согласия

В теории вероятностей существуют методы, позволяющие оценивать степень соответствия фактических распределений вероятностей их теоретическим значениям. С этой целью используются так называемые критерии согласия, наиболее известным из которых является критерий. Данный критерий позволяет сравнивать между собой эмпирические законы распределения, полученные по одним и тем же фактическим данным.

Чем меньше значение, тем лучше данный эмпирический закон согласуется с теоретическим. Для сравнения эмпирических законов распределения вероятностей вычисляются значения по следующей формуле:

Где соответственно фактические и теоретические значения частот исследуемых законов распределения.

Величина так же является случайной, а поэтому подчиняется своему закону распределения. Подход к сравнению эмпирических законов распределения можно показать на примере.

Установим, какой закон распределения вероятностей- нормальный или экспоненциальный- лучше отражает распределение данной величины, т.е. осуществим проверку гипотез. В качестве исследуемой величины берём объём реализации определённого товара. Исходные данные представлены в таблице 3:

Таблица 3. Сведения о реализации товара

Реализация (тыс.руб.)

Задача формулируется следующим образом: построить распределение вероятностей величины спроса на данный товар, если в результате проведённого исследования получены результаты о реализации, в тыс. руб. в день.

Решение задачи представлено в приложении 4.

В общем случае ряд логистических процессов, а именно: продажи, отгрузка продукции с оптово-торговых предприятий, движение запасов, оказание услуг при поставках продукции, расходование материальных ресурсов и т.п. описывается нормальным законом распределения вероятностей. Отличительный признак данного распределения- наличие выраженной симметрии случайных величин относительно их среднего значения. Для указанных процессов нормальный закон применим для всей продукции, определённых ассортиментных групп или отдельных наименований товаров.

При ABC-анализе структуры логистических процессов, получаемые характеристики в стоимостном или натуральном выражениях подчинены экспоненциальному распределению.

Тот факт, что реализация продукции соответствует нормальному закону, имеет важное значение для логистики, поскольку позволяет определять величину товарного запаса, для чего рекомендуется следующая формула:

где необходимая величина товарного запаса на неопределённый период,

средняя реализация в единицу времени(день, неделя, месяц),

среднеквадратическое отклонение.

Для рассмотренного примера товарный запас равен:

Данная модель показывает, что любое требование покупателя на то или иное качество товара должно быть удовлетворено с вероятностью близкой к 1. В этой модели используется правило "трёх сигм". В нормальном законе соответствует вероятности 0,99.

В современных условиях компьютерные технологии позволяют отслеживать в текущем режиме времени среднюю реализацию и среднеквадратические отклонения, а так же корректировать величину товарного запаса.

Предоставленная модель определения товарного запаса может быть использована как для розничной, так и для оптовой торговли.

Наряду со случайными событиями одним из основных понятий теории вероятностей является понятие случайной величины - величины, численное значение которой может меняться в зависимости от результата стохастического эксперимента .

Примерами случайных величин могут быть: отметка на экзамене - целое, положительное число (от 2 до 5); число оборотов спутника вокруг Земли до его гибели - любое натуральное число (в принципе ничем не ограниченное); продолжительность работы телевизора до выхода из строя - любое неотрицательное число и так далее.

Обозначать случайные величины будем греческими буквами - x, h, z и другими, а их возможные значения - x, y, z , снабжая их при необходимости индексами.

Таким образом, случайная величина x - число, которое ставится в соответствие каждому возможному исходу стохастического эксперимента. Поскольку исходы опыта полностью определяются элементарными событиями, можно рассматривать случайную величину как функцию от элементарного события w на пространстве элементарных событий W.

В зависимости от возможных значений все случайные величины можно разбить на два класса: дискретные и непрерывные.

Дискретной назовём случайную величину , возможные значения которой образуют или конечное множество, или счётное (бесконечное множество, элементы которого можно пронумеровать).

Примером случайной величины, принимающей конечное число значений, является число очков, выпавших при бросании кубика; примером случайной величины, принимающей счетное число значений может служить пуассоновcкая величина.

Для задания случайной величины недостаточно знать все её возможные значения, две случайные величины могут иметь одинаковые возможные значения, но принимать их с различными вероятностями (случайные величины - оценки на экзамене у сильных и слабых студентов имеют одинаковые возможные значения, но разные вероятности). Поэтому необходимо указать и возможные значения случайной величины, и вероятности, с которыми она может их принять.

Назовём законом распределения дискретной случайной величины правило, по которому каждому возможному значению xiставится в соответствие вероятность pi, с которой случайная величина может принять это значение.

Закон распределения дискретной случайной величины может быть задан графически, аналитически и таблично. В последнем случае задаётся таблица, где в одной строке записаны все возможные значения xi , а в другой соответствующие им вероятности p i . Её называют таблицей или рядом распределения вероятности.

Поскольку в результате опыта случайная величина может принять одно и только одно из возможных значений, то события, заключающиеся в том, что x примет значение x 1 , ... , x n попарно несовместны и в сумме образуют достоверное событие. Отсюда следует, что вероятность суммы этих событий равна 1 и мы приходим к важному соотношению.

. (2.1)

Замечание. Если множество возможных значений бесконечно и счётно, то сумма будет содержать бесконечное число слагаемых. Такую сумму называют суммой числового ряда. В этом случае находят сумму первых n членов - S n и затем переходят к пределу при n ® ¥. Таким способом в школьном курсе алгебры была найдена сумма членов бесконечной убывающей геометрической прогрессии.

Пример. Абитуриент сдаёт два вступительных экзамена: по математике и физике. Составить закон распределения случайной величины x, числа полученных пятёрок, если вероятность получения пятёрки по математике равна 0,8, а по физике - 0,6.

Решение. Очевидно, возможные значения x есть 0, 1, 2, причём

Здесь A 1 и A 2 - события, заключающиеся в том, что математика и соответственно физика сданы на 5. При вычислении вероятностей использовалась несовместность слагаемых и независимость сомножителей. Сведём полученное в таблицу и нарисуем график, который называется многоугольником распределения (рис. 2.1):

– ряд распределения вероятностей.

Как легко проверить, условие нормировки (2.1) выполняется.

Пример. Вероятность появления события A при одном испытании равна p . Испытания повторяются до появления события A . Составить закон распределения случайной величины x - числа испытаний, предшествующих первому появлению A .

Решение. Возможные значения x - все целые числа от 0 до ¥. Предположим, что x = n и подсчитаем вероятность такого события. Очевидно, оно произойдёт, если в первых n испытаниях произойдут события а в (n + 1) - произойдёт A . Отсюда искомая вероятность равна

здесь q = 1 - p и мы воспользовались независимостью сомножителей. Условие нормировки принимает вид

.

Здесь мы воспользовались формулой суммы членов бесконечно убывающей прогрессии со знаменателем q и первым (при n = 0) членом, равным p .

  1. Функция распределения и плотность распределения случайной величины

Для задания любой случайной величины можно ввестифункцию распределения F(x) , равную вероятности того, что случайная величина x примет значение, меньшее x:

Легко видеть, что F(x) – неубывающая функция, при этом F(-¥)=0; F(¥)=1.

По известному ряду распределения функцию распределения дискретной случайной величины находим так:

, (2.3)

где (x < x i) означает, что суммирование ведётся по всем индексам i, для которых это неравенство выполняется. Функция распределения F (x ) дискретной случайной величины x является ступенчатой, сохраняющей постоянное значение на каждом интервале, не содержащем точек x i , и терпящей в этих точках скачок, равный p i . Для примера о количестве пятерок функция распределения и её график (рис. 2.2) представлены ниже.

Обратимся теперь к непрерывной случайной величине x, которая в отличие от дискретной может принять любое значение из некоторого промежутка, т.е. ее возможные значения сплошь заполняют некоторый интервал и потому их множество несчетно. Например:

1) размер детали массового производства;

2) урожай с одной сотки;

3) ошибка измерения;

4) продолжительность работы устройства до момента отказа.

Распределение вероятностей непрерывной случайной величины x можно задать либо функцией распределения F(x) = P(x< x), либо ее производной , называемой плотностью распределения вероятности или плотностью вероятности . В точках, где производная не определена, будем считать, что f(x) = 0. В силу монотонности функции F(x) плотность f(x) ³ 0 всюду. Зная F(x) , можем найти плотность вероятности по формуле f(x) = F’(x) , а зная f(x) , найдем функцию распределения как .

Для непрерывной случайной величины xвероятность попадания ее в промежуток с концами a и b (неважно, открытый или замкнутый) равна

Полезно помнить, что:

1) плотность вероятности f(x) это есть вероятность попадания x в интервал (x, x+Dx), деленная на его длину Dx, когда длина Dx исчезающе мала;

2) вся площадь между графиком f(x) и осью Ox равна 1:

(2.5)

(аналог формулы (2.1)).

В качестве примера непрерывного распределения ниже мы рассмотрим так называемое нормальное распределение, его плотность .

  1. Числовые характеристики случайной величины

Широко пользуются некоторыми суммарными характеристиками случайной величины. К важнейшим из них относятся математическое ожидание и дисперсия.

Математическим ожиданием дискретной случайной величины x назовём сумму произведений всех её возможных значений на их вероятности

Подчеркнём, что математическое ожидание случайной величины есть некоторое число (постоянная, неслучайная величина).

Пример. Закон распределения случайной величины задан таблично. Найти математическое ожидание.

Решение. По определению,

M(x) = 0 × 0,08 + 1 × 0,44 + 2 × 0,48 = 1,4.

Для понимания очень полезна механическая аналогия. Трактуя возможные значения случайной величины как координаты точек на оси, а соответствующие им вероятности - как некоторые (вероятностные) массы, можно заметить, что математическое ожидание является аналогом понятия центра масс, то есть является тем “средним, центральным” значением, вокруг которого распределены все возможные значения случайной величины.

Пример. Согласно американским статистическим таблицам смертности вероятность того, что 25-летний человек проживет еще год, равна 0,992 (следовательно, вероятность того, что он умрет, равна 0,008). Страховая компания предлагает такому человеку застраховать свою жизнь на год на сумму 1000$; страховой взнос равен 10$. Найти математическое ожидание прибыли компании.

Решение. Величина прибыли X есть случайная величина со значениями +10$ (если застрахованный человек не умрет) и –990$ (если он умрет). Составим таблицу распределения вероятностей.

MX = 10 × 0,992 – 990 × 0,008 = 2.

Ожидаемая средняя прибыль положительна, что дает возможность страховой компании продолжать дело, оставлять резервный капитал для выплаты страховых сумм, производить административные расходы, получать прибыль.

Пример. Игра в рулетку. На колесе рулетки имеется 38 одинаково расположенных гнезд, которые нумеруются так: 00, 0, 1, 2,…, 35, 36. Игрок может поставить 1 доллар на любой номер. Если его номер выиграл, игрок получает 36$ (35$ выигрыша плюс 1$ ставки). Найти математическое ожидание выигрыша игрока.

Решение. Составим таблицу вероятностей.

MX= –37/38 + 35/38 = –2/38 = –1/19.

Игра не является “справедливой”, игорный дом, как и страховая компания, обеспечивает себе средний доход на “накладные расходы” и риск.

Пример. За дом внесен страховой взнос 200 рублей. Вероятность ему сгореть в данной местности для такого типа домов оценивается как 0,01. В случае, если дом сгорит, страховая компания должна выплатить за него 10000 рублей. Какую прибыль в среднем ожидает получить компания? На какую прибыль сможет рассчитывать компания, если для получения страховой суммы в размере 10000 она будет брать взнос 100 рублей?

Ожидаемая средняя прибыль для взноса 200 рублей:

M(X) = –9800 × 0,01 + 200 × 0,99 = –98 + 198 = 100.

То же для страхового взноса 100 рублей:

M(X) = –9900 × 0,01 + 100 × 0,99 = -99 + 99 = 0.

– такая работа компании называлась бы справедливой, но у нее не только бы отсутствовала прибыль, но и не было бы денег на административные расходы.

Как правило, приходится вычислять математические ожидания много более сложных случайных величин. Так, например, страховые расчеты производятся не за один год, а за много лет, и надо учитывать ежегодную прибыль от вкладов и т.д. При этом помогает знание свойств этой характеристики.

Мы уже знаем (см. п. 4.1.3), что для полного описания механизма исследуемого случайного эксперимента, т. е. для полного описания вероятностного пространства (или, что то же, для исчерпывающего задания интересующей нас случайной величины), недостаточно задать лишь пространство элементарных событий (и тем самым описать множество теоретически возможных значений анализируемой случайной величины). К этому необходимо добавить также: в дискретном случае - правило сопоставления с каждым возможным значением случайной величины вероятности его появления в непрерывном случае - правило сопоставления с каждой измеримой областью возможных значений случайной величины вероятности события, заключающегося в том, что в случайном эксперименте реализуется одно из возможных значений, принадлежащих заданной области АХ. Это правило, позволяющее устанавливать соответствия вида:

принято называть законом распределения вероятностей исследуемой случайной величины .

Прозрачное пояснение такой терминологии мы получаем в рамках дискретного вероятностного пространства, поскольку в этом случае речь идет о правиле распределения суммарной единичной вероятности (т. е. вероятности достоверного события) между отдельными возможностями

Очевидно, задание закона распределения вероятностей, т. е. соответствий типа (5.2), может осуществляться с помощью таблиц и графиков (только в дискретном случае), а также с помощью функций и алгоритмически (об основных формах задания законов распределения и примерах их модельной, т. е. аналитической, записи см. гл. 6).

Приведем примеры табличного и графического задания законов распределения вероятностей.

Тщательный статистический анализ засоренности партий дефектными изделиями (пример 4.5) позволил построить следующее распределение вероятностей для случайной величины выражающей число дефектных изделий, обнаруженных при контроле партии, состоящей из N=30 изделий, случайно отобранных из продукции массового производства (табл. 5.2):

Таблица 5.2

Значения вероятностей, приведенные в табл. 5.2, даны с точностью до третьего десятичного знака, поэтому то, что суммирование представленных в таблице вероятностей дает 0,998 (вместо единицы), легко объяснимо: недостающие 0,002 как-то «размазаны» между возможными значениями 11, ..., 30, но на каждое отдельное возможное значение приходится вероятность, меньшая 0,0005.

Тот же закон распределения может быть представлен графически (рис. 5.2).

Геометрическое изображение закона распределения вероятностей дискретной случайной величины часто называют полигоном распределения или полигоном частот.

В качестве другого примера рассмотрим фрагмент табл. 5.1, выбрав из одиннадцати представленных в ней компонент только две: качество жилищных условий и среднедушевой доход Еще более упростим рассматриваемую схему, перейдя от по существу непрерывной случайной величины к ее дискретному аналогу отказываясь от точного знания среднедушевого дохода каждой семьи и ограничиваясь лишь тремя возможными градациями: семья имеет низкий доход (градация ), средний доход (градация ) и высокий доход (градация ). С учетом четырех градаций качества жилищных условий: - качество низкое - качество удовлетворительное; - качество хорошее и - качество очень хорошее, и проведенного вероятностно-статистического анализа получаем следующий закон распределения вероятностей двумерной случайной величины (данные условные):

Таблица 5.3

Соответствующий двумерный полигон распределения представлен на рис. 5.3.

Закон распределения вероятностей многомерной случайной величины называют многомерным или совместным. Если каждая из компонент ( см. (5.1)) анализируемого многомерного признака дискретна и имеет конечное число всех возможных значений, то, очевидно, общее число возможных «значений» случайного вектора будет .

Рис. 5.2. Графическое задание закона распределения вероятностей для числа дефектных изделий, обнаруженных в наугад извлеченной партии, состоящей из 30 изделий массового производства

Рис. 5.3. Полигон двумерного распределения семей по качеству жилищных условий и по уровню дохода

В этом случае вместо общей индексации всех возможных многомерных значений удобнее пользоваться -мерной индексацией вида , где первый индекс i определяет номер возможного значения по первой компоненте, второй индекс j - по второй компоненте и т. д. Тогда будет означать возможное значение , полученное сочетанием возможного значения компоненты возможного значения компоненты возможного значения компоненты а вероятности удобно обозначать . Таким образом, в табл. 5.3 представлены вероятности

При анализе многомерных (совместных) распределений часто бывает необходимо получить закон распределения лишь для какой-то части компонент анализируемого векторного признака. Так, многомерная случайная величина , рассмотренная в табл. 5.1, естественно разбивается на два подвектора: описывающий социальнодемографические и экономическую характеристики семьи, и описывающий структуру семейного потребления.

Частный (маржинальный) закон распределения

подвектора анализируемой многомерной случайной величины описывает распределение вероятностей признака в ситуации, когда на значения другой части компонент не накладывается никаких условий. В дискретном случае соответствующие вероятности определяются по формулам:

Похожие публикации