Новая школа - Образовательный портал

Колебательные процессы в химических системах. Исследование колебательных химических реакций. Колебательные химические реакции

Колебательные химические реакции

В этой курсовой работе я рассмотрю частный случай проблемного эксперимента, колебательные химические реакции. Колебательные реакции - это целый класс реакций окисления органических веществ с участием катализатора, обладающего окислительно-восстановительными свойствами. Этот процесс протекает циклично т. е. состоит из многократных повторений.

Колебательные химические реакции были открыты и научно обоснованы в 1951 г. советским учёным Борисом Петровичем Белоусовым. Б.П. Белоусов изучал окисление лимонной кислоты при её реакции с бромноватокислым натрием в растворе серной кислоты. Для усилений реакции он добавил в раствор соли церия. Церий - металл с переменной валентностью (3+ или 4+), поэтому он может быть катализатором окислительно-восстановительных превращений. Реакция сопровождается выделением пузырьков СО 2 , и поэтому кажется, что вся реакционная смесь «кипит». И вот на фоне этого кипения Б. П. Белоусов заметил удивительную вещь: цвет раствора периодически изменялся - становился то жёлтым, то бесцветным. Белоусов добавил в раствор комплекс фенантролина с двухвалентным железом (ферроин), и цвет раствора стал периодически изменяться от лилово-красного к синему и обратно.

Так была открыта реакция, ставшая знаменитой. Сейчас она известна во всём мире, её называют «реакция Белоусова-Жаботинского». А. М. Жаботинский много сделал для понимания этого удивительного феномена. С тех пор отрыто большое число аналогичных реакций.

История открытия колебательных реакций.

Открытие колебательной химической реакции И. П. Белоусов сделал при попытке создать простую химическую модель некоторых стадий системы ключевых биохимический превращений карбоновых кислот в клетке. Однако первого сообщения о его открытии напечатано не было. Рецензент химического журнала усомнился в принципиальной возможности описанной в статье реакции. Большинство химиков в те годы полагали, что чисто химических колебаний не бывает, хотя существование колебательных реакций предсказал в 1910 г. А. Лоткой на основе математической теории периодических процессов.

Вторая попытка опубликования результатов исследования была предпринята учёным в 1957 г., и опять он получил отказ, несмотря на появившиеся тогда работы бельгийского физика и физикохимика И. Р. Пригожина. В этих работах была показана возможность и вероятность колебательных химических реакций.

Лишь в 1959 г. Был напечатан краткий реферат об открытии Б. П. Белоусовым периодически действующей колебательной химической реакции в малоизвестном издании "Сборник рефератов по радиационной медицине".

А всё дело в том, что когда Б. П. Белоусов сделал своё открытие, периодические изменения концентрации реагентов казались нарушением законов термодинамики. В самом деле, как может реакция идти то в прямом, то в противоположном направлениях? Невозможно представить себе, чтобы всё огромное число молекул в сосуде было то в одном, то в другом состоянии (то все «синие», то все «красные»…).

Направление реакции определяется химическим (термодинамическим) потенциалом - реакции осуществляются в направлении более вероятных состояний, в направлении уменьшения свободной энергии системы. Когда реакция в данном направлении завершается, это значит, что её потенциал исчерпан, достигается термодинамическое равновесие, и без затраты энергии, самопроизвольно, процесс в обратную сторону пойти не может. А тут… реакция идёт то в одном, то в другом направлении.

Однако никакого нарушения законов в этой реакции не было. Происходили колебания - периодические изменения - концентраций промежуточных продуктов, а не исходных реагентов или конечных продуктов. СО 2 не превращается в этой реакции в лимонную кислоту, это в самом деле невозможно. Рецензенты не учли, что пока система далека от равновесия, в ней вполне могут происходить многие замечательные вещи. Детальные траектории системы от начального состояния к конечному могут быть очень сложными. Лишь в последние десятилетия этими проблемами стала заниматься термодинамика систем, далёких от равновесия. Эта новая наука стала основой новой науки - синергетики (теория самоорганизации).

Реакцию Белоусова, как отмечено выше, детально изучил А. М. Жаботинский и его коллеги. Они заменили лимонную кислоту малоновой. Окисление малоновой кислоты не сопровождается образованием пузырьков СО 2 , поэтому изменение окраски раствора можно без помех регистрировать фотоэлектрическими приборами. В дальнейшем оказалось, что ферроин и без церия служит катализатором этой реакции. Б. П. Белоусов уже в первых опытах заметил ещё одно замечательное свойство своей реакции: при прекращении перемешивания изменение окраски в растворе распространяется волнами. Это распространение химических колебаний в пространстве стало особенно наглядным, когда в 1970 г. А. М. Жаботинский и А. Н. Заикин налили реакционную смесь тонким слоем в чашку Петри. В чашке образуются причудливые фигуры - концентрические окружности, спирали, «вихри», распространяющиеся со скоростью около 1 мм/мин. Химические волны имеют ряд необычных свойств. Так, при столкновении они гасятся и не могут проходить сквозь друг друга.

Исследования концентрационных колебаний до открытия реакции Белоусовым

Оказалось, что одна из первых публикаций по химическим колебаниям относится к 1828 г. В ней Т. Фехнер изложил результаты исследования колебаний электрохимической реакции. В 1833 г. В. Гершель публикует подобное исследование колебаний каталитической гетерогенной реакции. Наиболее интересна работа М. Розеншельда, относящаяся к 1834 г. Ее автор совершенно случайно заметил, что небольшая колба, содержащая немного фосфора, в темноте испускает довольно интенсивный свет. В самом факте свечения фосфора не было ничего удивительного, но то, что это свечение регулярно повторялось каждую седьмую секунду, было интересно. В публикации Розеншельда приводится детальное исследование мерцаний колбы. Сорок лет спустя эти эксперименты с "мерцающей колбой" продолжил француз М. Жубер (1874). Ему удалось в пробирке наблюдать периодическое образование "светящихся облаков". Еще через двадцать лет также немецкий ученый А. Центнершвер исследовал влияние давления воздуха на периодические вспышки фосфора. В его экспериментах период вспышек начинался с 20 сек. и уменьшался с понижением давления. В то же время в Англии химики Т. Торп и А. Таттон наблюдали в запаянном стеклянном сосуде периодические вспышки реакции окисления триоксида фосфора.

Особенно яркая страница в истории химических колебаний связана с так называемыми кольцами Лизеганга. В 1896 г. немецкий химик Р. Лизеганг, экспериментируя с фотохимикатами, обнаружил, что если капнуть ляписом на стеклянную пластину, покрытую желатиной, содержащей хромпик, то продукт реакции, выпадая в осадок, располагается на пластинке концентрическими окружностями. Лизеганг увлекся этим явлением и почти полвека занимался его исследованием. Нашлось и практическое его применение. В прикладном искусстве кольца Лизеганга использовали для украшения различных изделий с имитацией яшмы, малахита, агата и т. п. Сам Лизеганг предложил технологию изготовления искусственного жемчуга. И все-таки открытие Лизеганга, имевшее большой резонанс в научных химических кругах, не было первым. И до него изучали химические волны, а в 1855 г. вышла книга Ф. Рунге, в которой были собраны многочисленные примеры таких экспериментов.

Перечень подобных примеров можно продолжить. Вслед за указанными были открыты колебательные реакции на границе раздела двух фаз. Из них наиболее известны реакции на границе металл-раствор, получившие специфические названия - "железный нерв" и "ртутное сердце". Первая из них - реакция растворения железа (проволоки) в азотной кислоте - получила свое название из-за внешнего сходства с динамикой возбужденного нерва, замеченного В.Ф. Оствальдом. Вторая, вернее один из ее вариантов, - реакция разложения Н 2 О 2 на поверхности металлической ртути. В реакции происходит периодическое образование и растворение пленки оксида на поверхности ртути. Колебания поверхностного натяжения ртути обусловливают ритмические пульсации капли, напоминающие биение сердца. Но все эти реакции не привлекали особенного внимания химиков, поскольку представления о ходе химической реакции были еще достаточно смутными.

Лишь во второй половине XIX в. возникли термодинамика и химическая кинетика, положившие начало специфическому интересу к колебательным реакциям и методам их анализа. И в то же время именно развитие равновесной термодинамики послужило на первых порах тормозом при изучении подобных процессов. Дело, видимо, было в "инерции предыдущего знания". По словам профессора Шноля, "не мог образованный человек представить себе в беспорядочном тепловом движении огромного числа молекул макроскопическую упорядоченность: все молекулы то в одном, то в другом состоянии! Будто признать существование вечного двигателя. Этого быть не может. И в самом деле не может этого быть. Не может быть вблизи состояния равновесия, а только его и рассматривала термодинамика тех лет. Однако никаких ограничений на сложные, в том числе колебательные, режимы нет для неравновесных химических систем, когда реакции еще не завершились, и концентрации реагентов не достигли равновесного уровня. Но это обстоятельство ускользало от внимания химиков… Потребовалось чрезвычайное интеллектуальное напряжение, чтобы вырваться из "железных оков полного знания" и исследовать поведение систем вдали от равновесия".

Тем не менее уже в 1910 г. итальянец А. Лотка на основе анализа системы дифференциальных уравнений предсказал возможность колебаний в химических системах. Однако первые математические модели соответствовали только затухающим колебаниям. Лишь через 10 лет Лотка предложил систему с двумя последующими автокаталитическими реакциями, и в этой модели колебания уже могли быть незатухающими.

Однако позиции физиков и химиков здесь разошлись. Одно из наиболее ярких достижений физики и математики XX в. - создание теории колебаний. Большие, общепризнанные заслуги принадлежат здесь советским физикам. В 1928 г. аспирант А.А. Андронов, будущий академик, выступил на съезде физиков с докладом "Предельные циклы Пуанкаре и теория автоколебаний".

В начале 1930-х гг. в Институте химической физики АН СССР были обнаружены колебания свечения в "холодных пламенах", аналогичные колебательной люминесценции паров фосфора, которые заинтересовали известного физика Д.А. Франк-Каменецкого, объяснившего эти колебания на основании кинетической модели Лотки. А в 1947 г. в том же институте была представлена к защите диссертация на тему "К теории периодического протекания гомогенных химических реакций", написанная И.Е. Сальниковым под научным руководством Франк-Каменецкого. Эта диссертация содержала обширную информацию о более чем вековой истории изучения химических колебаний и первые результаты по их теоретическому исследованию методами теории нелинейных колебаний, развиваемой школой академика Андронова. Но защита ее тогда не состоялась. По мнению Вольтера, "работы Франк-Каменецкого и Сальникова по химическим автоколебаниям, изложенные в диссертации, в книге и в ряде статей, безусловно, были новаторскими для тогдашней химической науки. Но это новаторство мало кто понимал. "Колебательная идеология" (термин Андронова) была чужда неколебательной обыденности химической науки и практики, и этим можно объяснить тот факт, что работы Франк-Каменецкого и Сальникова в 1940-е гг. были приняты в штыки, а когда состоялось вторичное открытие химических колебаний, их никто не вспомнил". Остается загадкой, имел ли представление об этих работах Белоусов. Во всяком случае, в его двух статьях не приводится ссылок на работы его предшественников.

Использованы материалы:
him.1september.ru, Википедия, журнал Природа, scholarpedia.org, hopf.chem.brandeis.edu, online.redwoods.cc.ca.us, vivovoco.rsl.ru.

Министерство образования, науки, молодёжи и спорта

Теоретический лицей Петру Мовилэ

Кафедра

"Способность, труд, талант"

Курсовая работа по химии на тему:

"Колебательные химические реакции"

Выполнила: ученица 12А класса

Болюбаш Ирина

Преподаватель: Снидченко М.А.

* г. Кишинёв 2007 *

1. Введение:

а) Окислительно-восстановительные реакции

б) Колебательные химические реакции

2. История открытия колебательных реакций:

а) Исследования концентрационных колебаний до открытия

реакции Б. П. Белоусова

3. Теоретическая часть:

а) Математическая модель А. Лоткой

б) Изучение механизма колебательных реакций

4. Экспериментальная часть

5. Заключение

6. Приложение:

а) Рецепты некоторых колебательных реакций

б) Иллюстрации к проделанным опытам

7. Литература

Введение.

Химия - наука экспериментальная. И поэтому эксперимент как метод научного исследования давно и прочно занимает ведущее место среди методов естественных наук. Эксперимент - важнейший путь осуществления связи теории с практикой при обучении химии, превращения знаний в убеждения. Поэтому раскрытие познавательного значения каждого опыта - основное требование к химическому эксперименту.

Под экспериментом (от лат. «experiтeпtuт» - «испытание») понимают наблюдение исследуемого явления при определенных условиях, позволяющих следить за ходом этого явления и повторять его при соблюдении этих условий. Химический эксперимент занимает важное место в обучении химии, так как через наблюдения и опыты познаётся многообразие природы веществ, накапливаются факты для сравнений, обобщений, выводов.

Проводя опыты и наблюдая за химическими превращениями в различных условиях, мы убеждается, что сложными химическими процессами можно управлять, что в явлениях нет ничего таинственного, они подчиняются естественным законам, познание которых обеспечивает возможность широкого использования химических превращений в практической деятельности человека.

Однако результаты некоторых химических опытов неожиданны и не вписываются в традиционные представления о свойствах веществ или закономерностях протекания химических реакций. Такие химические превращения были названы, проблемным экспериментом.

Еще в пору античности философы полагали, что любое познание начинается с удивления. Удивление, вызванное новым, ведёт к развитию любознательности (чувствительности к проблемам в окружающем мире) с последующим формированием устойчивого интереса к чему-нибудь. Удивление и, следующая за ней, тяга к познанию – вот благодатная почва для изучения проблемного эксперимента, формирования диалектического и системного мышления, раскрытия творческого потенциала.

Такое же состояние может быть вызвано ярким, впечатляющим химическим экспериментом (проблемным экспериментом). В химии причинами проблемных экспериментов, чаще всего, являются окислительно-восстановительные реакции.

Окислительно-восстановительные реакции

Существуют многочисленные критерии классификации химических реакций. Один из важнейших – признак изменения степеней окисления элементов. В зависимости от того, изменяются степени окисления элементов или сохраняются, химические реакции могут быть разделены на окислительно-восстановительные и проходящие без изменения степеней окисления.

Реакции, протекающие с изменением степеней окисления элементов (окислительно-восстановительные), широко известны. Они играют большую роль в технике и природе, лежат в основе обмена веществ в живых организмах, с ними связаны процессы окисления, гниения, брожения, фотосинтеза. Процессы окисления (и восстановления) идут при сгорании топлива, коррозии металлов, электролизе, с их помощью получают металлы, аммиак, щелочи и многие другие ценные продукты. Поэтому изучение окислительно-восстановительных реакций предусмотрено школьными курсами неорганической и органической химии.

Напомним основные положения, связанные с концепцией окислительно-восстановительные реакций.

Степень окисления соответствует заряду, который возник бы на атоме данного элемента в химическом соединении, если предположить, что все электронные пары, посредством которых данный атом связан с другими, полностью смещены к атомам элементов с большей электроотрицательностью.

Окислитель – вещество, содержащее атомы или ионы, принимающие электроны: X m (окислитель) + ne - = X (m - n) , где m – степень окисления элемента в исходном веществе, n – число электронов.

Восстановитель – вещество, содержащее атомы или ионы, отдающие электроны: Y m (восстановитель) - ne - = Y (m + n) .

Окисление – процесс отдачи электронов атомом, молекулой или ионом, при этом степень окисления элемента повышается.

Восстановление - процесс приёма электронов атомом, молекулой или ионом, при этом степень окисления элемента понижается.

Окисление и восстановление – процессы сопряжённые, число электронов, отданных восстановителем в процесс его окисления, всегда равно числу электронов, принятых окислителем в процессе его восстановления.

Колебательные химические реакции

В этой курсовой работе я рассмотрю частный случай проблемного эксперимента, колебательные химические реакции. Колебательные реакции – это целый класс реакций окисления органических веществ с участием катализатора, обладающего окислительно-восстановительными свойствами. Этот процесс протекает циклично т. е. состоит из многократных повторений.

Колебательные химические реакции были открыты и научно обоснованы в 1951 г. советским учёным Борисом Петровичем Белоусовым. Б.П. Белоусов изучал окисление лимонной кислоты при её реакции с бромноватокислым натрием в растворе серной кислоты. Для усилений реакции он добавил в раствор соли церия. Церий – металл с переменной валентностью (3+ или 4+), поэтому он может быть катализатором окислительно-восстановительных превращений. Реакция сопровождается выделением пузырьков СО 2 , и поэтому кажется, что вся реакционная смесь «кипит». И вот на фоне этого кипения Б. П. Белоусов заметил удивительную вещь: цвет раствора периодически изменялся – становился то жёлтым, то бесцветным. Белоусов добавил в раствор комплекс фенантролина с двухвалентным железом (ферроин), и цвет раствора стал периодически изменяться от лилово-красного к синему и обратно.

Так была открыта реакция, ставшая знаменитой. Сейчас она известна во всём мире, её называют «реакция Белоусова-Жаботинского». А. М. Жаботинский много сделал для понимания этого удивительного феномена. С тех пор отрыто большое число аналогичных реакций.

История открытия колебательных реакций.

Открытие колебательной химической реакции И. П. Белоусов сделал при попытке создать простую химическую модель некоторых стадий системы ключевых биохимический превращений карбоновых кислот в клетке. Однако первого сообщения о его открытии напечатано не было. Рецензент химического журнала усомнился в принципиальной возможности описанной в статье реакции. Большинство химиков в те годы полагали, что чисто химических колебаний не бывает, хотя существование колебательных реакций предсказал в 1910 г. А. Лоткой на основе математической теории периодических процессов.

Вторая попытка опубликования результатов исследования была предпринята учёным в 1957 г., и опять он получил отказ, несмотря на появившиеся тогда работы бельгийского физика и физикохимика И. Р. Пригожина. В этих работах была показана возможность и вероятность колебательных химических реакций.

Лишь в 1959 г. Был напечатан краткий реферат об открытии Б. П. Белоусовым периодически действующей колебательной химической реакции в малоизвестном издании "Сборник рефератов по радиационной медицине".

А всё дело в том, что когда Б. П. Белоусов сделал своё открытие, периодические изменения концентрации реагентов казались нарушением законов термодинамики. В самом деле, как может реакция идти то в прямом, то в противоположном направлениях? Невозможно представить себе, чтобы всё огромное число молекул в сосуде было то в одном, то в другом состоянии (то все «синие», то все «красные»…).

Направление реакции определяется химическим (термодинамическим) потенциалом – реакции осуществляются в направлении более вероятных состояний, в направлении уменьшения свободной энергии системы. Когда реакция в данном направлении завершается, это значит, что её потенциал исчерпан, достигается термодинамическое равновесие, и без затраты энергии, самопроизвольно, процесс в обратную сторону пойти не может. А тут… реакция идёт то в одном, то в другом направлении.

Однако никакого нарушения законов в этой реакции не было. Происходили колебания – периодические изменения – концентраций промежуточных продуктов, а не исходных реагентов или конечных продуктов. СО 2 не превращается в этой реакции в лимонную кислоту, это в самом деле невозможно. Рецензенты не учли, что пока система далека от равновесия, в ней вполне могут происходить многие замечательные вещи. Детальные траектории системы от начального состояния к конечному могут быть очень сложными. Лишь в последние десятилетия этими проблемами стала заниматься термодинамика систем, далёких от равновесия. Эта новая наука стала основой новой науки – синергетики (теория самоорганизации).

Реакцию Белоусова, как отмечено выше, детально изучил А. М. Жаботинский и его коллеги. Они заменили лимонную кислоту малоновой. Окисление малоновой кислоты не сопровождается образованием пузырьков СО 2 , поэтому изменение окраски раствора можно без помех регистрировать фотоэлектрическими приборами. В дальнейшем оказалось, что ферроин и без церия служит катализатором этой реакции. Б. П. Белоусов уже в первых опытах заметил ещё одно замечательное свойство своей реакции: при прекращении перемешивания изменение окраски в растворе распространяется волнами. Это распространение химических колебаний в пространстве стало особенно наглядным, когда в 1970 г. А. М. Жаботинский и А. Н. Заикин налили реакционную смесь тонким слоем в чашку Петри. В чашке образуются причудливые фигуры – концентрические окружности, спирали, «вихри», распространяющиеся со скоростью около 1 мм/мин. Химические волны имеют ряд необычных свойств. Так, при столкновении они гасятся и не могут проходить сквозь друг друга.

Исследования концентрационных
колебаний до открытия реакции Б. П. Белоусовым

Но как гласит история, открытие Б. П. Белоусова было отнюдь не первым в мировой науке. Оказалось, что одна из первых публикаций по химическим колебаниям относится к 1828 г. В ней Т.Фехнер изложил результаты исследования колебаний электрохимической реакции. Наиболее интересна работа М. Розеншельда, относящаяся к 1834 г. Ее автор совершенно случайно заметил, что небольшая колба, содержащая немного фосфора, в темноте испускает довольно интенсивный свет. В самом факте свечения фосфора не было ничего удивительного, но то, что это свечение регулярно повторялось каждую седьмую секунду, было интересно. Сорок лет спустя эти эксперименты с «мерцающей колбой» продолжил француз М.Жубер (1874). Ему удалось в пробирке наблюдать периодическое образование «светящихся облаков». Еще через двадцать лет также немецкий ученый А.Центнершвер исследовал влияние давления воздуха на периодические вспышки фосфора. В его экспериментах период вспышек начинался с 20 с и уменьшался с понижением давления.

Особенно яркая страница в истории химических колебаний связана с так называемыми кольцами Лизеганга. В 1896 г. немецкий химик Р.Лизеганг, экспериментируя с фотохимикатами, обнаружил, что если капнуть ляписом на стеклянную пластину, покрытую желатиной, содержащей хромпик, то продукт реакции, выпадая в осадок, располагается на пластинке концентрическими окружностями. Лизеганг увлекся этим явлением и почти полвека занимался его исследованием. Нашлось и практическое его применение. В прикладном искусстве кольца Лизеганга использовали для украшения различных изделий с имитацией яшмы, малахита, агата и т. п. Сам Лизеганг предложил технологию изготовления искусственного жемчуга.

Перечень подобных примеров можно продолжить. Вслед за указанными были открыты колебательные реакции на границе раздела двух фаз. Из них наиболее известны реакции на границе металл–раствор, получившие специфические названия – «железный нерв» и «ртутное сердце». Первая из них – реакция растворения железа (проволоки) в азотной кислоте – получила свое название из-за внешнего сходства с динамикой возбужденного нерва, замеченного В.Ф.Оствальдом. Вторая, вернее один из ее вариантов, – реакция разложения Н 2 О 2 на поверхности металлической ртути. В реакции происходит периодическое образование и растворение пленки оксида на поверхности ртути. Колебания поверхностного натяжения ртути обусловливают ритмические пульсации капли, напоминающие биение сердца. Но все эти реакции не привлекали особенного внимания химиков, поскольку представления о ходе химической реакции были еще достаточно смутными.

Лишь во второй половине XIX в. возникли термодинамика и химическая кинетика, положившие начало специфическому интересу к колебательнымреакциям и методам их анализа.

Математическая модель А. Лоткой

Математическая теория колебаний в системах, аналогичных химическим реакциям, была опубликована еще в 1910 г. А. Лоткой – он написал систему дифференциальных уравнений, из которой следовала возможность периодических режимов. Лотка рассматривал взаимодействие «жертв», например травоядных животных, и поедающих их «хищников» (X и Y). Хищники поедают жертв и размножаются – концентрация Y растёт, но до некоторого предела, когда численность жертв резко уменьшается, и хищники умирают от голода – концентрация Y уменьшается. Тогда уцелевшие жертвы начинают размножаться – концентрация X растёт. Уцелевшие хищники вслед за этим также размножаются, концентрация Y снова растёт, и так далее многократно. Наблюдаются периодические колебания концентрации реагентов. Ясно, что условием таких незатухающих (длительное время) колебаний является изобилие травы – пищи жертв. Уравнения Лотки усовершенствовал В. Вольтерра. А современную теорию колебаний разработали российские физики Л. И. Мандельштамм, А. А. Андронов, А. А. Витт, С. Э. Хайкин, Д. А. Франк-Каменецкий. Так что для физиков и математиков открытие Белоусова не было таким удивительным.

Изучение механизма колебательных реакций.

Детальный механизм реакции Белоусова всё ещё известен не полностью. В первых работах казалось, что число промежуточных продуктов невелико. Для объяснения природы колебаний было достаточно представить себе, как сначала из малоновой кислоты образуется броммалоновая кислота, и при дальнейшей реакции с ней KВrO 3 превращается в KBr. Анион Br -- тормозит дальнейшее окисление броммалоновой кислоты, и накапливается окисленная форма катализатора (четырёхвалентного церия или трёхвалентного железа в комплексе с фенантролином). В результате прекращается накопление Br -- , и окисление броммалоновой кислоты возобновляется... Теперь ясно, что такой механизм далеко не полон. Число промежуточных продуктов достигло четырёх десятков, и изучение продолжается.

В 1972 г. Р. Нойес и сотрудники показали, что реакция Белоусова- Жаботинского – итог, по крайней мере, десяти реакций, которые можно объединить в три группы – А, Б и В.

Сначала (группа реакций А) бромат-ион взаимодействует с бромид-ионом в присутствии Н + с образованием бромистой и гипобромистой кислот:

BrO -3 + Br -- + 2H + = HBrO 2 + HOBr ( А 1)

гипобромистую кислоту:

HBrO 2 + Br -- + H + = 2HOBr ( А 2)

Гипобромная кислота, в свою очередь, реагирует с бромид-ионом, образуя свободный бром:

HOBr + Br -- + H + = Br 2 + H 2 O ( А 3)

Малоновая кислота бромируется свободным бромом:

Br 2 + CH 2 (COOH) 2 = BrCH(COOH) 2 + Br -- + H + ( А 4)

В результате всех этих реакций малоновая кислота бромируется свободным бромом:

BrO -3 + 2Br -- + 3CH 2 (COOH) 2 + 3H + = 3BrCH(COOH) 2 + 3H 2 O ( А )

Химический смысл этой группы реакций двойной: уничтожение бромид-иона и синтез броммалоновой кислоты.

Реакции группы Б возможны лишь при отсутствии (малой концентрации) бромид-иона. При взаимодействии бромат-иона с бромистой кислотой образуется радикал BrO 2 .

BrO -3 + HBrO 2 + H + > 2BrO 2 + H 2 O ( Б 1)

BrO 2 реагирует с церием (III), окисляя его до церия (IV), а сам восстанавливается до бромистой кислоты:

BrO 2 + Ce 3+ + H + > HВrO 2 + Ce 4+ ( Б 2)

Бромистая кислота распадается на бромат-ион и гипобромистую кислоту:

2HBrO 2 > BrO -3 +HOBr + H + ( Б 3)

Гипобромистая кислота бромирует малоновую кислоту:

HOBr + CH 2 (COOH) 2 > BrCH(COOH) 2 + H 2 O ( Б 4)

В итоге реакций группы Б образуется броммалоновая кислота и четырехвалентный церий.

Колебания концентраций основных компонентов реакции: бромистой кислоты и феррина – в фазовом пространстве представляются в виде замкнутой линии (предельного цикла).

BrO -3 + 4Ce 3+ + CH 2 (COOH) 2 + 5H + > BrCH(COOH) 2 + 4Ce 4+ + 3H 2 O ( Б )

Образовавшийся в этих реакциях церий (IV) (реакции группы В):

6Ce 4+ + CH 2 (COOH) 2 + 2H 2 O > 6Ce 3+ + HCOOH + 2CO 2 +6H + ( В 1)

4Ce 4+ + BrCH(COOH) 2 + 2H 2 O > Br -- + 4Ce 3+ + HCOOH + 2CO 2 + 5H + ( В 2)

Химический смысл этой группы реакций: образование бромид-иона, идущее тем интенсивнее, чем выше концентрация броммалоновой кислоты. Увеличение концентрации бромид-иона приводит к прекращению (резкому замедлению) окисления церия (III) в церий (IV). В исследованиях последнего времени церий обычно заменяют ферроином.

Из этой (неполной) последовательности этапов реакции Белоусова-Жаботинского видно, сколь сложна эта система. Так, достаточно учитывать изменение концентрации всего трех основных промежуточных компонентов реакции HВrO 2 (бромистой кислоты), Br -- и ферроина (или церия).

Первый шаг в реакции – в результате автокаталитической реакции образуется бромистая кислота (быстрый, подобный взрыву процесс), ферроин трансформируется в ферриин (окисленную форму ферроина).

Второй шаг – в результате взаимодействия с органическим компонентом феррин начинает медленно трансформироваться обратно в ферроин, и одновременно начинает образовываться бромид-ион.

Третий шаг – бромид-ион является эффективным ингибитором автокаталитической реакции (1-й шаг). Как следствие, прекращается образование бромистой кислоты, и она быстро распадается.

Четвертый шаг – процесс распада ферриина, начатый на 2-м шаге, завершается; бромид-ион удаляется из системы. В результате система возвращается к состоянию, в котором находилась до 1-го шага, и процесс повторяется периодически. Существует несколько математических моделей (систем дифференциальных уравнений), описывающих эту реакцию, колебания концентрации ее реагентов и закономерности распространения концентрационных волн.


Экспериментальная часть:

Реакция взаимодействия лимонной кислоты с броматом калия:

Реактивы:

1. K M nO 4 (перманганат калия).

2. KВrO 3 (калий бромноватокислый или бромат калия).

3. H 2 SO 4 (концентрированная).

4. Лимонная кислота.

5. Дистиллированная вода.

Ход работы: Навеску лимонной кислоты – 2 г растворили в 6 мл H 2 O. В полученный раствор добавили навеску калия бромноватокислого - 0,2 г и долили 0,7 мл концентрированной серной кислоты. Затем внесли 0,04 г перманганата калия и довели объем полученного раствора до 10 мл дистиллированной водой. Тщательно перемешали до полного растворения реактивов.

Наблюдения: Сразу после добавления KMnO 4 раствор приобрёл фиолетовую окраску и начал «кипеть». Через 25 с, при бурном кипении, цвет раствора стал меняться на коричневый. С течением реакции раствор постепенно светлеет - вплоть до светло-желтого цвета. Через 3 мин 45 с начинается резкое потемнение раствора (похоже на диффузию жидкости высокой плотности), и через 40 с раствор снова становится полностью коричневым. Далее все повторяется с периодом 4,5 мин – 5 мин. Через довольно большой промежуток времени реакция начинает замедляться, затем и прекращается вовсе (раствор жёлтого цвета).

Колебательные окислительно-восстановительные реакции:

Реактивы:

1. FeSO 4 . 7H 2 O кристаллический гептагидрат сульфата железа(II) или

Fe(NH 4) 2 (SO 4) 2 . 6H 2 O (соль Мора) гексагидрат сульфата диаммония-

железа(II)

2. Ce(NO 3) 3 . 6H 2 O гексагидрат нитрата церия(III)

3. KBr водный раствор бромида калия (2 моль/л, или 12 г на 50 мл воды)

4. KBrO 3 насыщенный раствор бромата калия (около 10 г на 100 мл воды)

5. H 2 SO 4 концентрированная серная кислота

6. CH 2 (COOH) 2 водный раствор малоновой кислоты (5 моль/л, или 52 г в

100 мл воды)

7. C 12 H 8 N 2 (phen) о-фенантролин

8. дистиллированная вода

Посуда и приборы: Полилюкс с экраном, стеклянная пластинка размером 25Χ25 см, чашка Петри, мерная колба емкостью 100 мл, колба Эрленмейера емкостью 250 мл с пришлифованной пробкой, шесть пипеток, бюретка, стеклянная палочка, промывалка, фильтровальная бумага.

Описание опыта: Для демонстрации эксперимента предварительно готовят растворы А и Б.

Раствор А – раствор ферроина – комплекса железа(II) с о-фенантролином (phen). В мерную колбу емкостью 100 мл вносят 0,70 г гептагидрат сульфата железа(II) (или 0,99 г соли Мора) и 1,49 г о-фенантролина, доводят объем раствора водой до метки и перемешивают. Раствор приобретает красный цвет за счет образования фенантролинового комплекса железа(II):

Fe 2+ + 3 phen = 2+

Раствор Б – раствор броммалоновой кислоты (готовится непосредственно перед демонстрацией). В коническую колбу с пришлифованной пробкой вводят 3,3 мл раствора бромида калия, 5 мл раствора малоновой кислоты и 5 мл концентрированной серной кислоты. Полученный раствор титруют из бюретки насыщенным раствором бромата калия при перемешивании после добавления каждой порции титранта, добиваясь исчезновения коричневой окраски за счет выделения брома в параллельно протекающей реакции конмутации:

BrO 3 – + 5Br – + 6H + = 3Br 2 + 3H 2 O

3Br 2 + 2CH 2 (COOH) 2 + 2H 2 O = BrCH(COOH) 2 + HCOOH + CO 2 + 5HBr

Общий объем раствора бромата калия, пошедшего на титрование, должен составлять около 7,5 мл. Образующаяся броммалоновая кислота неустойчива, однако некоторое время ее можно хранить при температуре 510 0 С.

Для непосредственной демонстрации опыта на стеклянную пластинку, закрывающую световое окно полилюкса, ставят чашку Петри, в которую последовательно вносят с помощью пипеток 10 мл насыщенного раствора бромата калия, 4 мл раствора броммалоновой кислоты и 1,5 мл раствора ферроина. В течение нескольких минут на красном фоне появляются голубые пятнышки за счет образование фенантролинового комплекса железа(III) 3+ в результате окисления соответствующего комплекса железа(II):

6 2+ + 6H 3 O + + BrO 3 – = 6 3+ + 9H 2 O + Br –

Этот процесс является самоускоряющимся. Образующийся комплекс 3+ окисляет броммалоновую кислоту с образованием бромид-ионов:

4 3+ + BrCH(COOH) 2 + 7H 2 O =

= 2CO 2 + 5H 3 O + + Br – + HCOOH + 4 2+

Выделяющиеся бромид-ионы являются ингибиторами реакции окисления комплексов железа(II) бромат-ионами. Только когда концентрация комплексных ионов 2+ становится достаточно высокой, ингибирующая активность бромид-ионов преодолевается, и раствор становится голубым за счет образования комплекса железа(III). Процесс повторяется снова и снова, поэтому и окраска раствора периодически изменяется из голубой в розовую, или наоборот. Изменение окраски начинается с появлением на розовом фоне голубых пятнышек, от которых во все стороны расходятся концентрические волны окраски. С течением времени скорость изменения окраски уменьшается и, в конце концов, процесс затухает. При этом на экране можно наблюдать появление “черных точек”  проекций пузырьков выделяющегося диоксида углерода.

Диапазон окрасок можно расширить, если добавить в чашку Петри несколько кристаллов гексагидрата нитрата церия(III) Ce(NO 3) 3 . 6H 2 O. Тогда, помимо голубой и розовой окраски, можно наблюдать желтое (за счет образования соединений церия(IV)) или зеленое окрашивание (вследствие нало наложения желтого и голубого цвета):

6Ce 3+ + BrO 3 – + 15H 2 O = 6 2+ + Br – + 6H 3 O +

4 2+ + BrCH(COOH) 2 + 3H 3 O + =

= 2CO 2 + Br – + HCOOH + 4Ce 3+ + 9H 2 O

При нагревании скорость реакций возрастает, а смена окрасок убыстряется.

Примечание. Фенантролин представляет собой гетероциклическое соединение с двумя атомами азота, обладающими неподелёнными парами электронов и способными к координации. В комплексных соединениях с железом о -фенантролин играет роль бидентатного лиганда и образует прочные комплексы хелатного типа.

Заключение.

К настоящему времени реакция Белоусова–Жаботинского заняла достойное место в мировой науке. Каждый год в мире проводится по нескольку международных конференций по динамике нелинейных химических систем, а слова «BZ-reaction» (сокращение: реакции Белоусова-Жаботинского) звучат на десятках других конференций, посвященных проблемам физике, химии, биологии.

Изучение реакции Белоусова-Жаботинского, как я убедилась, имеет огромное значение, ведь она нашла применение в различных областях науки и техники. Эта реакция используется как модель для исследования грозного нарушения работы сердца – аритмии и фибрилляций. А в недавнее время были начаты эксперименты со светочувствительной модификацией этой реакции, когда динамика в этой системе зависит от интенсивности света. Оказалось, что такую реакцию можно использовать как вычислительную машину для хранения и обработки изображения. Светочувствительная модификация реакции Белоусова-Жаботинского может служить прототипом вычислительного комплекса, который возможно, придет на смену ЭВМ.

С другой стороны, колебательные химические реакции являются ярким примером самоорганизации в неживой природе, и в этом смысле имеется не только естественно-научное, но и философское значение. Фундаментальные изменения в естествознании, породившие так называемую теорию самоорганизации, обусловлены в значительной степени начальным импульсом, приданным ей российскими учеными на рубеже 1950–1960-х гг., когда Белоусов открыл окислительно-восстановительную химическую реакцию. При этом были обнаружены поразительные аналогии, оказалось, что многие природные явления, начиная от образования галактик до смерчей, циклонов и игры света на отражающих поверхностях, по сути дела, – процессы самоорганизации. Они могут иметь самую различную природу: химическую, механическую, оптическую, электрическую и др.

Так, все больший удельный вес приобретают исследования прикладной направленности, например, в области моделирования альтернативных средств обработки информации (в частности, анализ сложных мозаик с градацией яркости объектов). Еще одним новым направлением прикладных исследований является изучение особенностей полимеризации в БЖ-системе или сходных с ней.

Сложной пространственно-временной организации, проявляемой БЖ-системой в отсутствие перемешивания, со временем нашлись аналогии в природе, в биологических системах (например: периодические процессы клеточного метаболизма, волны активности в сердечной ткани и в тканях головного мозга, процессы, происходящие на уровне не экологических систем), в новой ее области – синергетики (теории самоорганизации), а также экспериментальные работы инициировали развитие современной теории динамических систем. Хотя в настоящее время многое в таких реакциях уже понятно, однако причины, вызывающие колебательные химические процессы, остаются до конца невыясненными.

В настоящее время кинетика колебательных реакций – бурно развивающаяся отрасль знаний, возникшая на стыке химии, биологии, медицины, физики, математики. Мне было очень интересно познакомиться со столь необычными и на первый взгляд невозможными свойствами живой материи. Но ещё больше меня поразило, что такое невероятное по своей значимости, впечатляющее открытие долгие годы не воспринималось другими, и просто не было понято великими умами того времени. Это открытие прошло свой тернистый путь, и, в конце концов, заняло достойное место в мировой науке. А сама возможность такой реакции ещё раз доказывает, что в нашем мире существует ещё очень много неизведанного и неизученного.

Приложение.

Рецепты некоторых колебательных реакций

Рецепт 1: Необходимо приготовить растворы перечисленных далее веществ из расчета их конечных концентраций: малоновая кислота 0,2 М; бромат натрия 0,3 М; серная кислота 0,3 М; ферроин 0,005 М. Ферроин можно заменить сульфатом двухвалентного марганца или трехвалентного церия, но при этом интенсивность окраски будет существенно слабее. Около 5 мл раствора всех компонентов нужно налить в чашку Петри так, чтобы толщина слоя жидкости была 0,5-1 мм. Через 3-8 мин (переходный период) можно наблюдать колебания и химические волны.

Рецепт 2: В плоскую прозрачную кювету слоями (1 мл) налить следующие растворы:

- KВrO 3 (0,2 моль/л)

- малоновую кислоту (0,3 моль/л)

- ферроин (0,003 моль/л)

- H 2 SO 4 (0,3 моль/л)

Кювету поставить на лист белой бумаги. Темп реакции можно изменить, добавляя щелочь или кислоту.

Рецепт 3: Необходимы растворы:

- лимонной кислоты (40 г в 160 мл H 2 O)

- H 2 SO 4 (1:3).

А также навески:

- KBrO 3 (16 г)

- Ce 2 (SO 4) 3 (3-3,5 г)

Раствор лимонной кислоты нагреть до 40°-50° С, затем высыпать навеску KВrO 3 . Стакан поставить на лист белой бумаги и внести навеску Ce 2 (SO 4) 3 и несколько мл H 2 SO 4 . Сразу начинает происходить чередование цветов: желтый > бесцветный > желтый, с периодом 1-2 мин.

Рецепт 4: Необходимы растворы:

- H 2 O 2 (50 мл 30%)

- KIO 3 (7,17 г в 50мл H 2 O)

- HСlO 4 (30 мл разбавленного раствора)

- малоновая кислота (3 г в 50 мл H 2 O). И навески:

- MnSO 4 (1г) и немного крахмала.

Все слить в один стакан (200-250 мл), добавить навески, размешать стеклянной палочкой. Происходит чередование цвета: бесцветный > жёлтый > голубой.

Список литературы.

1. Алиев Р. , Шноль С. Э. «Колебательные химические реакции». Кинетика и катализ. 1998. № 3. С. 130-133.

2. Шноль С. Э. Знание – Сила. 1994. № 3. С. 62-71.

3. Жаботинский А. М. Концентрационные автоколебания. М.: Наука, 1974.

4. Гарел Д., Гарел О. Колебательные химические реакции / Пер. с англ. М.:

5. Дубнищева Т. Я. Концепции современного естествознания. Новоси-

бирск: ЮКЭА, 1997, С. 683 – 697.

6. Концепции современного естествознания. Под ред. В. Н. Лавриненко,

В. П. Ратникова, М.: ЮНИТИ-ДАНА, 1999, С. 78 - 87.

7. Вавилин Б.В. "Автоколебания в жидкофазных химических системах".

Природа, 2000, № 5, С. 19 – 25.

Деденёв Юрий

Поводом для начала этой работы послужила статья “ Колебательные реакции в химии ” С.П.Муштакова из Саратовского государственного университета им.Чернышевского опубликованная в Соросовском Образовательном Журнале (Soros Educational Jornal) №7 за 1997год. В школьном курсе химии отсутствует даже упоминание о существовании подобного типа реакций, их ещё называют реакциями Белоусова –Жаботинского. Целью данной работы является максимальное привлечение внимания учащихся к предмету химия, то есть не просто поиск самородков увлечённых химией, но и попыткой пробудить скрытые способности у учеников, которые открыто не проявились до настоящего момента. Заинтересовать их, привить любовь к химии как к одной из интереснейших и красивейших наук современности, которая скрывает в себе огромнейший потенциал неисследованного материала, возможность создавать новые ещё неизвестные вещества. С уверенностью можно сказать, что Казанская школа химиков одна из сильнейших в России и поэтому хотелось бы, чтобы она пополнилась молодыми, энергичными и энтузиастами своего дела, которые могли бы привить любовь к химии и другим.

Скачать:

Предварительный просмотр:

РОССИЙСКАЯ ОТКРЫТАЯ КОНФЕРЕНЦИЯ УЧАЩИХСЯ

«ЮНОСТЬ, НАУКА, КУЛЬТУРА»

Секция ХИМИИ

ИССЛЕДОВАНИЕ КОЛЕБАТЕЛЬНЫХ ХИМИЧЕСКИХ РЕАКЦИЙ

Деденёв Юрий

СОШ №105, 11 класс, Казань

Научный руководитель:

Миннуллин Р.Р., учитель II-ой квалификационной категории

г. Обнинск 2005

Обозначения и условные сокращения стр. 3

Введение стр. 4

Глава 1. История появления и перспективы процессов стр. 5

1.1. История обнаружения колебательных процессов стр. 5

1.2. Современная история исследования процессов стр. 5

1.3. Возможные перспективы применения процессов стр. 6

Глава 2. Теоретическое предсказание возможности реакции стр. 7

2.1. Свойства основных компонентов реакции стр. 7

2.2. Первые математические модели. Системы Лотка стр. 7

Глава 3. Экспериментальная часть стр. 9

3.1. Синтез бромата калия (kaliumbromat) стр.10

4+ стр.10

3.3. Подготовка и проведение колебательной реакции стр. 11

Глава 4. Заключение стр.14

Литература стр.18

Приложение стр.19

Рисунок 1 стр.19

Рисунок 2 стр.20

Условные обозначения

1. БЖ - Белоусов – Жаботинский

2. ЛК - Лимонная кислота

3. МК - Малоновая кислота

4. БМК – Броматмалоновая кислота

5. см. – смотри

6. рис. – рисунок

7. max – максимум

8. min – минимум

Введение

Поводом для начала этой работы послужила статья “ Колебательные реакции в химии ” С.П.Муштакова из Саратовского государственного университета им.Чернышевского опубликованная в Соросовском Образовательном Журнале (Soros Educational Jornal) №7 за 1997год. В школьном курсе химии отсутствует даже упоминание о существовании подобного типа реакций, их ещё называют реакциями Белоусова –Жаботинского.

Целью данной работы является максимальное привлечение внимания учащихся к предмету химия, то есть не просто поиск самородков увлечённых химией, но и попыткой пробудить скрытые способности у учеников, которые открыто не проявились до настоящего момента. Заинтересовать их, привить любовь к химии как к одной из интереснейших и красивейших наук современности, которая скрывает в себе огромнейший потенциал неисследованного материала, возможность создавать новые ещё неизвестные вещества. С уверенностью можно сказать, что Казанская школа химиков одна из сильнейших в России и поэтому хотелось бы, чтобы она пополнилась молодыми, энергичными и энтузиастами своего дела, которые могли бы привить любовь к химии и другим. Поэтому мы перед собой поставили следующие задачи:

1. Дать краткую предысторию открытия реакций колебания

2. Дать теоретическое обоснование механизмов протекания реакций колебания

3. Провести синтезы получения необходимых компонентов из доступных химических реактивов

4. Провести реакцию колебания

Глава 1. История появления и возможные перспективы

1.1.История обнаружения колебательных процессов

Впервые колебательную химическую реакцию, проявляющуюся в виде периодических вспышек при окислении паров фосфора, наблюдал Роберт Бойль в конце ХVII века. Эти повторяющиеся вспышки затем неоднократно описывали многие исследователи. В ХIХ веке были обнаружены и другие колебательные реакции. Однако они не привлекли особого внимания, поскольку химическая кинетика как наука ещё не существовала. Лишь возникновение термодинамики и химической кинетики положили начало к специфическому интересу к колебательным реакциям и методам их анализа. Предсказания возможности колебаний в химических системах делались начиная с 1910 года на основе математических моделей А.Лотки. В 1921 году У.Брей опубликовал статью, в которой достаточно подробно описана первая колебательная жидкофазная реакция. Брей осознал связь между своим открытием и прогнозом Лотки. Однако его работа не вызвала интереса в течении примерно 40 лет. Одна из причин такого безразличия – довольно низкий уровень развития методов исследования механизмов сложных химических реакций. Другой причиной было широко распространённое мнение, что второй закон термодинамики запрещает такие колебания даже в дали от равновесия. Фактически большинство химиков считали, что колебания концентрации в закрытых гомогенных системах невозможны, иначе говоря, чисто химических колебаний не бывает.

1.2.Современная история исследований колебательных процессов

Исследования колебательных химических реакций в жидкой фазе началась в 1951 году, когда Б.П.Белоусов открыл колебания концентраций окисленной и восстановительной форм церия в реакции взаимодействия лимонной кислоты с броматом. Раствор регулярно менял свою от бесцветной к жёлтой (обусловленной СеIV), затем снова к бесцветной (СеIII) и т.д. Белоусов провёл достаточно подробное исследование этой реакции и, в частности, показал, что период колебаний сильно уменьшается с повышением кислотности среды и температуры. Реакция была удобна для лабораторных исследований. Колебания можно было легко наблюдать визуально, а их период находился в пределах 10 – 100 с, совпадая с естественным масштабом времени человека – наблюдателя.

В конце 1961 года работа Б.П. Белоусова была продолжена А.М. Жаботинским, который получил колебания при использовании в качестве восстановителя в реакции Белоусова не только лимонной, но и малоновой, а также яблочной кислот. А.М. Жаботинский провёл подробные исследования колебаний в системе с малоновой кислотой, которая оказалась более удобным восстановителем, так как протекание реакции не осложнялось газовыделением. Новость об этой изумительной реакции обошла весь мир, и в нескольких лабораториях (в СССР, США и Западной Европе) стали интенсивно изучать реакцию БЖ. Колебательные реакции наконец-то вошли в химические лаборатории.

1.3 Возможные перспективы применения колебательных процессов

Рассмотрим перспективы возможного применения колебательных химических процессов. Отличительной особенностью таких режимов, отмеченной ещё в конце XIХ века Пуанкаре, является их высокая чувствительность к малейшим внешним возмущениям. Проведение исследований в этой области открывает огромные перспективы по созданию принципиально новых методик анализа микроколичеств веществ.

Количественной основой для аналитического определения различных микропримесей (и слабых внешних воздействий) может быть зависимость частоты (периода) колебаний от концентрации реагентов или катализатора. Поскольку измерение частоты колебаний – одна из наиболее простых и точно выполняемых операций, то автоколебательные химические реакции можно использовать в аналитических целях.

Детальное изучение взаимодействия колебаний, распространяющихся от двух пространственно удалённых центров, помогло разобраться в различных видах аритмий, возникающих в сердечной мышце. В настоящее время кинетика колебательных реакций – бурно развивающаяся отрасль знаний, возникшая на стыке химии, биологии, медицины, физики, математики. В настоящее время показано, что хаотические режимы наблюдаются во многих областях биологии (в биохимии, биофизике, учении о биоритмах, при изучении динамики популяций, миграции организмов и т.д.), экологии и в самом широком понимании этого понятия некоторых социальных процессах (изменение народонаселения, развитие экономики). Во многих случаях сравнительно простые динамические химические системы со строго контролируемыми концентрационными изменениями исходных и промежуточных химических веществ могут оказаться весьма подходящими функциональными моделями при изучении хаотических процессов в других областях знаний (науке о земле и других планетах, физике твёрдого тела, ядерной физике и физике элементарных частиц, инженерной механики и т.д.).

Глава 2 Теоретическое предсказание реакций колебания

2.1. Свойства основных компонентов реакции.

Восстановитель должен легко окисляться окисленной формой катализатора и не должен реагировать непосредственно с броматом. Кроме того, необходимо, чтобы восстановитель легко бромировался и бромпроизводные достаточно легко разлагались, выделяя Вr . Этим требованиям удовлетворяют вещества с активной метиленовой группировкой. Реакции с участием МК, БМК, ЛК качественно близки.

В качестве катализатора могут быть использованы вещества (прежде всего ионы переменной валентности), близкие к ионам церия как по величине окислительно – восстановительного потенциала, так и по кинетике реакций окисления и восстановления.

Реакции окисления галоген – кислородными соединениями имеют сходную кинетику. Поэтому естественно предположить, что хлорат и йодат могут заменить бромат. Однако хлорат и йодат не могут заменить бромат в качестве окислителя. Окислительно - восстановительные потенциалы в реакциях этих соединений с различными восстановителями (например, галогенидами) близки. Однако скорости реакций окисления вышеуказанных катализаторов йодатом и хлоратом гораздо ниже скоростей окисления броматом. Следовательно, бромат остаётся единственным окислителем в этом классе реакций.

2.2. Первые математические модели колебательных химических реакций

Системы Лотка

Математическое моделирование концентрационных колебательных систем началось с работы Лотка (Lotka,1910), в которой рассматривалась система:

А Х Y . 1.1

Здесь имеется резервуар А, линейное превращение А в Х, автокаталитическое превращение Х в Y и линейная убыль Y. Эта модель была применена Лотка для описания как химических, так и экологических систем. Лотка рассматривал открытую систему, т.е. с самого начала пренебрегал расходом А и не учитывал конечных продуктов превращения Y. Кроме того, он описывал автокатализ как элементарную реакцию. Эти допущения приводят к следующей системе уравнений:

x = k 0 A – k 1 xy, y = k 2 xy – k 3 y.

В простейшем случае k 2 = k 1 . Члены k 0 A и k 3 y могут описывать как химические реакции, так и линейные транспортные процессы в открытой системе.

Следующая модель, изученная Лотка (Lotka,1920) и позже независимо Вольтера (Volterra, 1931), содержит две последовательные автокаталитические реакции (эта модель широко известна в экологии под названием «жертва-хищник». Например: А – удельное количество травы, запас которой считается неисчерпаемым; Х – плотность популяции травоядных; Y – плотность популяции хищников).

А Х Y . 1.2

Предполагая относительно схемы (1.2) то же, что и для схемы (1.1), Лотка и Вольтера получили следующую систему уравнений:

x = k 1 Ax – k 2 xy, y = k 3 xy – k 4 y.

Отметим, что математическое описание этих процессов оказалось достаточно сложным. Не случайно теоретические работы по колебательным реакциям продолжают выходить и по сей день, хотя соответствующий математический аппарат был развит ещё в конце девятнадцатого века. Математическое моделирование привело к неожиданным результатам. Оказалось, что одна из простейших химических схем, описывающих колебания в системе двух последовательных автокаталитических реакций, математически тождественна уравнениям, которые Вольтера в начале 30-х годов использовал для описания экологических процессов.

В качестве примера воспользуемся двумя взаимодействующими системами, одна из которых черпает необходимую ей для развития энергию, вещество или другие компоненты из другой (химический аналог – колебательная реакция). Такая задача называется задачей о хищниках и жертвах. Для наглядности представим, что в некоторой ограниченной среде обитают волки и зайцы. В данной экологической системе растёт трава, которой питаются зайцы, в свою очередь являющихся пищей для волков, Как известно, если иметь любую совокупность живых существ, то при благоприятных условиях их популяция будет увеличиваться неограниченно. На самом деле внешние факторы, например недостаток энергии или пищи, такой процесс разрастания ограничивают. Как же это происходит на примере волков и зайцев?

Представим, что до определённого момента взаимодействие двух подсистем, то есть популяций волков и зайцев, было сбалансированным: зайцев (с учётом их естественного пополнения) как раз хватало, чтобы прокормить определённое число волков. Затем в момент, принимаемый за нуль отсчёта времени, из-за какой-то флуктуации число зайцев возросло. Это увеличило количество пищи для волков и, стало быть, их число. Возникла флуктуация численности волков. Причём количество волков и зайцев будет меняться во времени периодически около некоторого среднего (равновесного) значения. Сытые волки начнут усиленно размножаться, давая новое потомство, которое на обильной пище быстро взрослеет и даёт новый приплод. Складывается ситуация, когда зайчатник уже не в состоянии прокормить всех волков – численность зайцев начинает падать, а волков (до поры) продолжает расти. Наконец экосистема перенаселена волками, а зайцам место чуть ли не в красной книге. Не будем спешить с выводами. Став экологической редкостью, зайцы становятся трудной добычей для волков. Экосистема вступает в следующую фазу: численность зайцев уже упала до минимального уровня, при котором они практически неуловимы для волков. Поголовье последних, пройдя через максимум, начинает сокращаться, и это сокращение продолжается до тех пор, пока не будет достигнут уровень, который в состоянии прокормить зайцы при своей минимальной численности. Теперь, когда численность волков достигла минимума, некому охотиться и за зайцами. Зайцы начинают плодиться, а скудному волчьему поголовью за ними уже не уследить. Численность зайцев в короткий срок достигнет уровня, который в состоянии прокормить трава. Вновь возникает изобилие зайцев, и всё повторяется вновь.

Глава 3 Основная экспериментальная часть

3.1. Синтез бромата калия (kaliumbromat)

В большой фарфоровый стакан наливают 1050 мл отфильтрованного 30%-го раствора КОН (техн.) и из капельной воронки с трубкой, доходящей до дна, очень медленно, при постоянном перемешивании, приливают (под тягой) 110 г брома. Полученный раствор насыщают (под тягой) хлором. Окончание насыщения определяют следующим образом. Пробу раствора (10 мл) разбавляют 10 мл воды, кипятят до полного удаления Br 2 и Cl 2 (йодокрахмальная бумажка не должна синеть в парах жидкости) и добавляют каплю раствора фенолфталеина. При полном насыщении хлором проба раствора не должна окрашиваться в красный цвет.

Реакционный раствор охлаждают до 15 о С, отделяют выпавшую смесь кристаллов КС1О 3 и КС1 (300 – 350 г) и в течении нескольких часов размешивают их с 150 мл воды. Оставшиеся кристаллы КВrО 3 отсасывают на воронке Бюхнера, промывают 100 мл воды и отделяют. Получают 200 – 240 г сырого бромата калия.

Синтез можно выразить следующими уравнениями химических реакций:

Вr 2 + 2КОН = КВrO + KBr + H 2 O

KBrO + Cl 2 + 4KOH = KBrO 3 +4KCl + 2H 2 O

KBr + Cl 2 + 6KOH = KBrO 3 + 6KCl + 3H 2 O

3.2. Возможные способы получения катализатора Се 4+

В школьных химических лабораториях можно найти двуокись церия, который раньше входил в школьный набор химических реактивов. Главной задачей является получение любой растворимой соли церия, в данном случае проще всего получить сульфат церия (VI), для этого необходимо имеющуюся двуокись церия подвергнуть действию концентрированной серной кислоты при кипячении. СеО 2 не растворим в воде, поэтому необходимо действовать серной кислотой не посредственно на порошок двуокиси церия.

Уравнение реакции можно выразить следующим образом:

СеО 2 + 2Н 2 SО 4 = Се(SО 4 ) 2 + 2Н 2 О

Образуется ярко-жёлтый раствор сульфата церия (VI), затем его можно упарить на выпарительной чашке до появления жёлтых кристаллов. Если всё таки нет двуокиси церия, то получить растворимый ион церия можно следующим способом: можно использовать кремний от зажигалок, необходимо взять их несколько штук и растворить в концентрированной серной кислоте при нагревании. В состав кремния, от зажигалок, входят соединения церия (III) и (VI). Но при этом нужно учитывать, что чистота эксперимента может измениться из-за наличия примесей в исходном компоненте.

3.3. Подготовка и проведение колебательной реакции.

Для проведения опыта готовят два раствора. В первом случае раствор сульфата или нитрата церия (IV), в данном эксперименте было использовано 1,0 г свежее приготовленного сульфата церия, растворённого в 15 мл воды и подкисленного серной кислотой. Во втором - в 10мл горячей воды растворяют лимонную кислоту и туда же высыпают бромат калия. Для полного растворения веществ смесь слегка подогревают. Приготовленные растворы быстро сливают вместе и перемешивают стеклянной палочкой. Появляется светло-жёлтая окраска, которая через 20 сек. меняется на тёмно-коричневую, но спустя 20 сек. вновь становится жёлтой. При температуре 45 о С такое изменение можно наблюдать в течении 2 мин. Затем раствор помутнеет, начнут выделяться пузырьки оксида углерода (IV), а промежутки чередования цвета раствора постепенно увеличиваются в строго определённой последовательности: каждый следующий промежуток больше предыдущего на 10 - 15 сек., также при этом происходит увеличение температуры раствора.

Вовремя демонстрации или после демонстрации эксперимента для учащихся механизм химической реакции можно объяснить в упрощенном варианте, то есть как окислительно - восстановительный процесс, в котором роль окислителя выполняет бромноватая кислота (БК), а восстановителя - лимонная кислота:

KBrO 3 + H 2 SO 4 = KHSO 4 + HBrO 3

9HBrO 3 + 2C 6 H 8 O 7 = 9HBrO + 8H 2 O + 12CO 2

9HBrO + C 6 H 8 O 7 = 9HBr + 4H 2 O + 6CO 2

Изменение цвета раствора происходит под действием катализаторов - соединений церия, которые в свою очередь также меняют степень окисления, но до определённой концентрации иона, после чего происходит обратный процесс.

Глава 4. Заключение

Для удобства изложения, первоначально, рассмотрим упрощенную схему автоколебательной реакции. В ходе этой реакции наблюдаются колебания окраски раствора, вызванные колебаниями концентрации церия (VI). Колебания концентрации церия (VI) показаны на рис.2. Это – релаксационные колебания, период которых (Т) чётко делится на две части: Т1 - фаза падения концентрации церия (VI) и Т2 – фаза нарастания концентрации. Соответственно по упрощенной схеме реакция состоит из двух стадий: в первой стадии четырёхвалентный церий восстанавливается лимонной кислотой, рис.1.

ЛК

Се4+ Се3+ , (1)

во второй – трёхвалентный церий окисляется броматом

BrO 3

Се3+ Се4+ (2)

Продукты восстановления бромата, образующиеся на стадии (2), бромируют ЛК. Получающиеся бромпроизводные ЛК разрушаются с выделением ионов брома. Бромид является сильным ингибитором реакции (2).

Каталитическое действие на реакцию может оказывать какой – либо из её продуктов.

Такое явление получило название автокатализа. Характерная особенность автокаталитической реакции состоит в том, что она идёт переменной возрастающей в ходе реакции и концентрации катализатора. Поэтому скорость автокаталитической реакции в начальный период возрастает и лишь на более глубоких стадиях превращения в результате убыли концентрации исходных веществ рост скорости сменяется падением.

Скорость автокаталитических процессов по мере расходования реагентов не уменьшается, а возрастает без какого – либо противоречия с законом действующих масс. Механизм реакций таков, что их промежуточные или конечные продукты оказывают ускоряющее влияние на процесс. Поэтому скорость их в начале исчезающее мала, но затем растёт вместе с ростом концентрации продуктов реакции. По современной терминологии такие процессы относятся к процессам с положительной обратной связью. Так, например, если промежуточный или конечный продукт многостадийной окажется её ингибитором, будет наблюдаться самоторможение реакции – скорость её будет уменьшаться быстрее. Чем падает концентрация исходных реагентов.

В реакции при взаимодействии ионов Се4+ с лимонной кислотой происходит их восстановление:

Се 4+ + С 6 Н 8 О 7 Се 3+ + продукт (1)

Образующийся в ходе реакции Се3+ должен затем вступить в реакцию с бромат –ионом:

Се 3+ + BrO 3 Се 4+ (2)

приводящую к стационарному распределению церия между степенями окисления. Однако реакция (2) относится к автокаталитическим, и в ней самоускоряющемуся протеканию предшествует период индукции, то есть реакция включается не сразу. Поэтому за время периода индукции практически все ионы Се 4+ переходят в Се 3+ . При этом окраска раствора, обусловленная поглощением света в видимой области спектра комплексом Се 4+ с лимонной кислотой, исчезает. По завершении периода индукции происходит самоускоряющийся быстрый переход ионов Се 3+ в Се 4+ и раствор вновь обретает первоначальный цвет.

Периодический характер процесса можно объяснить следующим образом. В результате реакции (1):

Се(VI) + лимонная кислота Се(III) + продукт

образуются бромид – ионы, замедляющие реакцию (2):

Се(III) + HBrO 3 Се(VI) + продукты.

Однако концентрация бромида в системе зависит от скорости реакции, в которой бромид расходуется за счёт взаимодействия с броматом

(BrO 3 + Br Br 2 ). Если концентрация бромида достаточно высока, то реакция (2) прекращается, так как Се(VI) не регинерируется при окислении Се(III) броматом, и в результате каталитический цикл прерывается. Когда концентрация Се(VI), уменьшающаяся в результате реакции (1), достигает минимально возможного значения, концентрация бромид – иона начинает резко уменьшаться. Тогда реакция (2) заметно ускоряется и концентрация Се(VI) растёт до некоторого значения, при котором концентрация бромида начинает быстро увеличиваться, замедляя тем самым реакцию (2). Затем весь цикл повторяется, рис.2.

В целом механизм реакции может быть описан следующим набором уравнений:

Процесс А

BrO 3 + 2Br + 3(CH 2 ) 2 C(OH)(COOH) 3 + 3H +

3BrCH(CH 2 )C(OH)(COOH) 3 + 3H 2 O

BrO 3 + Br + 2H + HBrO 2 + HOBr

HBrO 2 + Br + H + 2HOBr

HOBr +Br + H + Br 2 + H 2 O

Br 2 + (CH 2 ) 2 C(OH)(COOH) 3 BrCH(CH 2 )C(OH)(COOH) 3 + Br + H +

Процесс Б

BrO 3 + 4Ce 3+ + (CH 2 ) 2 C(OH)(COOH)3 + 5H +

BrCH(CH 2 )C(OH)(COOH) 3 + 4Ce 4+ + 3H 2 O

BrO 3 + HBrO 2 + H + 2BrO 2 + H 2 O

BrO 2 + Ce 3+ + H + HBrO 2 + Ce 4+

2HBrO 2 BrO 3 + HOBr + H +

HOBr + (CH 2 ) 2 C(OH)(COOH) 3 BrCH(CH 2 )C(OH)(COOH) 3 + H 2 O

Кроме приведённых идут также реакции: взаимодествия лимонной кислоты с ионами церия (VI) и серной кислоты (за счёт подкисления раствора и диссоциации сульфата церия (VI)), механизмы реакций не описываем из-за их сложности, продуктами этих реакций являются окись углерода (IV), окись углерода (II), вода и частично диметилкетон.

Теперь можно обобщить всё сказанное и дать определение колебательным реакциям: колебательные реакции –это периодические процессы, характеризующиеся колебаниями концентраций и соответственно скоростей превращения. Причиной возникновения колебаний концентрации является наличие обратных связей между отдельными стадиями сложной реакции.

Мы искренне надеемся, что наша работа привлечёт к себе внимание многих, а также что она будет дальше развита и продолжена.

Использованная литература

  1. А.M. Жаботинский Концентрационные колебания. М.: – Наука. 1974.
  2. Ю.В. Карякин, И.И. Ангелов Чистые химические вещества. М.: – Химия. 1974.
  3. Б.Н. Степаненко Курс органической химии. М.: – Высшая школа. 1972.
  4. Н.А. Остапкевича Практикум по неорганической химии. М.: – Высшая школа 1987
  5. В.Н. Алексинский Занимательные опыты по химии. М.: Просвещение, 1980.
  6. Соросовский образовательный журнал. №7.1997.

Приложение

[ Ce 4 + ]

M - - - - - - -

N - - - - - - - - - - - - - - - - - - - - - - - - |- - - - - - - - - - - - - - - - - - - - - - - - - -

| | |

| | |

| Т 1 | Т 2 |

| | |

| | t

| Т |

| |

| |

Рис.1. Автоколебания концентрации церия (VI)

[ Ce 4+ ]

Max - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

Min - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

[ Br ]

Рис.2. Зависимость изменения концентрации церия (VI) от концентрации бромд – ионов.

Сущность колебательных реакций. Механизм и кинетика колебальных реакций.

Содержание

  1. ВВЕДЕНИЕ…………………………………………………………...……..…3
  2. Основные понятия….………………………………………………………4
  3. История…………………………..…………………………………………5
  4. Значимость и область применения…………………….……….…………8
  5. Механизмы реакций………………………………………………………10
  6. Кинетика колебательных реакций…………………………………….…14
  7. Порядок проведения эксперимента………………………..…………….15
  8. Экспериментальные данные…………………………………….……….18
  9. Заключение………………………………………………………………..23
  10. Список литературы …………..………………………………..…………24

ВВЕДЕНИЕ
Колебательные реакции являются одним из самых интересных и притягивающих разделов неорганической химии. Привлекающие пристальное внимание не только химиков, но и физиков, математиков, биофизиков и многих других, они являются актуальным вопросом современной науки. Поэтому в своей работе я хочу ознакомится с историей колебательных реакций, их практическим применением и двумя самыми известными гомогенными колебательными реакциями, а также разобраться в их механизмах и, поставив эксперимент, познакомиться с колебательными реакциями на практике.

Основные понятия колебательных реакций

  • Колебательные реакции - класс окислительно-восстановительных реакций, характеризующийся периодическими колебаниями промежуточных веществ и как следствие колебаниями окраски, температуры, скорости протекания и др.
Существует несколько типов колебательных реакций:
  1. Каталитические
  2. Гомогенные
  3. Реакции катализируемые ферментами
  4. Реакции катализируемые ионами металов
  5. Гетерогенные (реакции на твердых катализаторах)
  6. Некаталитические, хотя называть их автокаталитическими более правильно (окисление ароматических соединений броматом)
  • Индукционный период - время первичного образования и накопления катализатора реакции.
  • Период колебания - наименьший промежуток времени, за который совершается одно полное колебание (то есть система возвращается в то же состояние, в котором она находилась в первоначальный момент, выбранный произвольно)
История
Историю колебательных реакций нередко начинают с немецкого химика и отчасти натурфилософа Фридлиба Фердинанда Рунге. В 1850 и 1855 г. он последовательно выпустил две книги, в которых были описаны красочные периодические структуры, возникающие на фильтровальной бумаге, когда на неё наливают один за другим растворы различных веществ. Собственно одна из них -«Вещество в стремлении к формированию» представляла собой «альбом с наклеенными листами фильтровальной бумаги, на которой были произведены соответствующие реакции. Например, фильтровальная бумага пропитывалась раствором медного купороса, просушивалась и вновь пропитывалась раствором фосфорнокислого алюминия, на её в середину наносились капли железисто-синеродистого калия, после чего наблюдалось образование периодических наслоений». После Рунге в историю колебательных реакций вступает Рафаэль Лизеганг. В 1896 г. он публикует свои опыты с ритмическими структурами (кольцами Лизеганга), получающимися при отложении осадка бихромата серебра в желатине. Лизеганг наливал на стеклянную пластину нагретый раствор желатина, содержащий бихромат калия. Когда раствор застывал, он наносил в центр пластины каплю раствора азотнокислого серебра. Осадок бихромата серебра выпадал не сплошным пятном, а концентрическими окружностями. Лизеганг, знакомый с книгами Рунге, первоначально склонялся к натурфилософскому и организмическому объяснению полученного им периодического процесса. При этом он положительно отреагировал и на физическое объяснение своих «колец», данное в 1898 г. Вильгельмом Оствальдом, что базировалось на понятии о метастабильном состоянии. Это объяснение вошло в историю как теория пересыщения.
До сих пор речь шла не о собственно колебательных химических реакциях, а скорее о периодических физико-химических процессах, где химическое превращение сопровождалось фазовым переходом. Ближе к собственно химическим колебаниям подошёл Давид Альбертович Франк-Каменецкий, который начал публиковать свои опыты о химических колебаниях с 1939 г. Он описал периодические явления при окислении углеводородов: если, например, через турбулентный реактор пропускать смеси высших углеводородов, то наблюдаются периодические вспышки (пульсации) холодного пламени.
В 1949 г. в «Журнале физической химии» была опубликована большая статья И.Е. Сальникова, подводящая итог его работе, начатой совместными исследованиями с Д.А. Франк-Каменецким. В этой статье было сформировано понятие о термокинетических колебаниях. В ходе этих колебаний изменяется температура, и их необходимым условием является баланс между выделением тепла и его диссипацией в окружающую среду. И всё же самым весомым аргументом в пользу химических колебаний была статья Бориса Павловича Белоусова, которую он дважды безуспешно пытался опубликовать - в 1951 и 1955 годах. Хотя термокинетические колебания протекают в гомогенных системах (в отличие, скажем, от систем Лизеганга или осциллирующего хрома), их обеспечивает физический (или физико-химический) процесс термокатализа. Открытие Б.П. Белоусова практически завершило почти 150-летний поиск колебательных режимов в химических процессах. Она являлась уже чисто химической колебательной реакцией. В 1950-е гг., однако, происходили и другие события, относящиеся к реакции Белоусова. Ведь хотя статья Б.П. Белоусова была отвергнута, информация о его реакции распространялась на уровне научного фольклора.
Одним из реципиентов этой информации оказался Симон Эльевич Шноль, что уже тогда занимался периодическими процессами в биохимии. Его интересовала природа химической периодичности. Получив в 1958 г. от Белоусова рукопись его статьи, Шноль стал экспериментировать с его реакцией. А в 1961 г. он поручил своему аспиранту Анатолию Марковичу Жаботинскому продолжить работу Б.П. Белоусова, и тот, проводя исследования сначала под руководством Шноля, а потом независимо от него, внёс решающий вклад в выяснение кинетики реакции Белоусова и в её математическое моделирование. В результате чего эта реакция стала называться реакцией Белоусова-Жаботинского.

Механизмы реакций
На сегодняшний день изучено несколько десятков гомогенных и гетерогенных химических реакций. Исследование кинетических моделей таких сложных реакций позволило сформулировать ряд общих условий, необходимых для возникновения устойчивых осцилляций скорости реакций и концентраций промежуточных веществ:

  1. Устойчивые колебания возникают в большинстве случаев в открытых системах, в которых есть возможность поддерживать концентрации участвующих реагентов постоянными.
  2. Колебательная реакция должна включать в себя автокаталитические и обратимые стадии, а также стадии, которые ингибируются продуктами реакции.
  3. Механизм реакции должен включать стадии с порядком выше первого.
Данные условия являются необходимыми, но не достаточными условиями для возникновения в системе автоколебаний. Стоит отметить, что существенную роль играет также соотношение между константами скоростей отдельных стадий и значений исходных концентраций реагентов.


3HOOC(OH)C(CH 2 COOH) 2 + BrO 3 - Ce(3+/4+), H+ → Br - + 3CO 2 + 3H 2 O
Реакция Белоусова-Жаботинского первая из открытых и исследованных колебательных реакций. В связи с чем, ее, пожалуй, можно назвать одной из наиболее исследованных реакций этой группы. На данный момент тем или иным способом подтверждено наличие восьмидесяти промежуточных стадий (и побочных реакций) протекающих в системе.
Одной из самых первых и простых схем реакций была схема, которая состоит из двух стадий:

  1. Окисление трехвалентного церия броматом
Ce 3+ BrO3(-), H+ → Ce 4+
  1. И восстановление четырехвалентного церия лимонной кислотой
Ce 3+ ЛК → Ce 4+
Она, однако, не дает понимания того, как и в следствии чего возникают колебания в системе, что приводит нас к рассмотрению механизма реакции предложенного, в 1972г, Нойесом и другими:
  1. BrO 3 - + Br - + 2H + ↔ HBrO 2 + HBrO
  2. HBrO 2 + Br - + H + ↔ 2HBrO
  3. HBrO + Br - + H + ↔ Br 2 + H 2 O
  4. Br 2 + HOOC(OH)C(CH 2 COOH) 2 → Br - + H + + HOOC(OH)C(CHBrCOOH)CH 2 COOH
  5. BrO 3 - + HBrO 2 + H + ↔ 2BrO 2 . + H 2 O
  6. BrO 2 . + Ce 3+ + H + → HBrO 2 + Ce 4+
  7. 2HBrO 2 ↔ BrO 3 - + HBrO + H +
  8. HBrO + HOOC(OH)C(CH 2 COOH) 2 → H 2 O + HOOC(OH)C(CHBrCOOH)CH 2 COOH
  9. 18Ce 4+ + HOOC(OH)C(CH 2 COOH) 2 + 5H 2 O → 18Ce 3+ + 6CO 2 + 18H +
10) 16Ce 4+ + HOOC(OH)C(CHBrCOOH)CH 2 COOH → 16Ce 3+ + 6CO 2 + 18H + + Br -

Итак, рассмотрим колебания Ce 3+ / Ce 4+ в этой системе. Допустим у нас есть небольшое, постепенно увеличивающееся количество Ce 4+ в растворе, что значит, что концентрация Br - также невелика и растет за счет реакции (10). Поэтому, как только будет достигнута некоторая критическая концентрация Ce 4+ , концентрация Br - резко возрастет, что приведет к связыванию HBrO 2 стадия (2), необходимой для каталитического окисления Ce 3+ , стадии (5), (6). Из этого следует, что прекратится накопление Ce 4+ в растворе и его концентрация будет уменьшаться по реакциям (9), (10). Высокая концентрация Br - вызовет увеличение скорости их расхода по реакциям (1)-(3). При этом, после снижения концентрации Br - ниже определенного значения, практически остановит реакции (2) и (3), приводя к накоплению HBrO 2 . Из чего следует повышение концентрации Ce 4+ и повтор пройденного нами цикла.

Реакция Бриггса-Раушера:
IO 3 - + 2H 2 O 2 + H + + RH Mn(2+/3+) → RI + 2O 2 + 3H 2 O
Где RH- малоновая кислота, а RI- йодопроизводная малоновой кислоты.
Данная реакция была открыта в 1973г . Суть реакции состоит в окислении малоновой кислоты иодат-ионами в присутствии перекиси водорода и катализатора (ионов Mn 2+/3+). При добавлении в качестве индикатора крахмала наблюдаются колебания окраски раствора из беcцветной в желтую, а затем в синюю, вызванные колебаниями концентраций йода. Полное изучение механизма реакции Бриггса-Раушера сложная и до сих пор не решенная, пожалуй, в первую очередь, кинетическая задача. По современным представлениям, механизм данной реакции включает в себя до тридцати стадий. При этом, чтобы понять причины колебаний достаточно рассмотреть упрощенный механизм реакции, состоящий из одиннадцати нижеприведенных стадий:

  1. IO 3 - + H 2 O 2 + H + → HIO 2 + O 2 + H 2 O
  2. IO 3 - + HIO 2 + H + ↔ 2IO 2 . + H 2 O
  3. HIO 2 + H 2 O 2 → HIO + O 2 + H 2 O
  4. IO 2 . + Mn 2+ + H 2 O ↔ HIO 2 + MnOH 2+
  5. 2HIO + H 2 O 2 → 2I - + 4O 2 + 4H +
  6. MnOH 2+ + I - + H + ↔ I . + Mn 2+ + H 2 O
  7. HIO+ I - + H + ↔ I 2 + H2O
  8. 2HIO 2 → IO 3 - + HIO + H +
  9. RH↔ enol
  10. HIO + enol → RI + H2O
  11. I 2 + enol → RI + I - + H +
Рассмотрим колебания в этой реакции на примере пары I 2 /I - , так как именно наличие или отсутствие йода легче всего зафиксировать в растворе благодаря образующимся синим крахмальным комплексам.
Итак, если концентрация I - мала (или данные ионы отсутствуют в растворе, что соответствует начальному моменту времени), то в соответствии со стадией (5), а при дальнейших колебаниях и стадией (11), а также обратной реакцией стадии (7) они начинают накапливаться в растворе, что приводит к уменьшению (при условии наличия) концентрации I 2 . Из уменьшения концентрации I 2 следует падение скорости накопления I - . При этом, большая концентрация ионов I - вызывает большую скорость его расходования по прямой реакции стадии (7) и возросшая, было, концентрация I - вновь уменьшается приводя нас к началу данного рассуждения и повторению описанного цикла.

Кинетика колебательных реакций

Проблемы изучения кинетики являются, на данный момент, наиболее сложными, и до сих пор не решенными вопросами колебательных реакций. Ввиду большого количества взаимозависимых и параллельных процессов, протекающих в данном классе реакций, составление систем дифференциальных уравнений, дающих хотя бы приближенные значения констант скоростей промежуточных стадий, становится крайне нетривиальной задачей. И хотя сейчас существует несколько упрощенных моделей, позволяющих рассмотреть основные черты сложного поведения колебательных реакций, данная тема представляется достаточно малоизученной и потому чрезвычайно интересной для последующих поколений исследователей. При этом, несмотря на это, в этой работе этот раздел изучения колебательных реакций не получит дальнейшего развития из-за недостатка времени и средств необходимых для его изучения.

Порядок проведения эксперимента
Реакция Белоусова-Жаботинского.

Реактивы: Лимонная кислота, бромат калия, сульфат церия(III), серная кислота.
Посуда: Мерный цилиндр на 50мл, термостойкие стаканы на 300мл и 100мл, стеклянная палочка, шпатель.
Оборудование: Аналитические весы, плитка.
Для проведения реакции Белоусова-Жаботинского необходимо приготовить следующие растворы и навески:

  1. Приготовить раствор лимонной кислоты и нагреть его до 50 о С.
  2. Всыпать навески бромата калия и сульфата церия (III), размешать стеклянной палочкой.
  3. Снять раствор с плитки.
  4. Добавить серную кислоту.

Реакция Бриггса-Раушера.
Необходимые реактивы, посуда и оборудование:
Реактивы: Йодат калия, серная кислота, малоновая кислота, сульфат марганца (II), крахмал, перекись водорода.
Посуда: мерный цилиндр на 50мл, 2 стакана на 500 мл, 3 стакана на 100мл, стеклянная палочка, шпатель.
Оборудование: Аналитические весы, магнитная мешалка, магнит.
Для проведения реакции Бриггса-Раушера необходимо приготовить следующие растворы:
Раствор №1:

Раствор №2:

Раствор №3

Порядок проведения эксперимента:

  1. Приготовить все необходимые растворы.
  2. В химический стакан на 500мл, в котором находится магнит налить 50мл раствора №1 и поставить на магнитную мешалку. Включить её.
  3. В два других стакана отмерить порознь 25мл раствора №2 и 40мл раствора №3.
  4. Добавить, одновременно, растворы №2 и №3 к раствору №1.
  5. Зафиксировать индукционный период и периоды колебаний.

Эксперимент
Реакция Белоусова-Жаботинского:
Для проведения реакции был приготовлен раствор лимонной кислоты (20г на 80мл воды). Для полного растворения лимонной кислоты раствор было необходимо нагреть на электрической плитке. Далее были приготовлены навески бромата калия (8г) и сульфата церия III(1,5г) и последовательно всыпаны в раствор лимонной кислоты. После перемешивания стеклянной палочкой аккуратно, продолжая помешивание была добавлена серная кислота, после чего зафиксированы колебания окраски белый-желтый.

Период, с Цвет Период, с Цвет
1 23 белый 12 12 желтый
2 11 желтый 13 66 белый
3 41 белый 14 8 желтый
4 12 желтый 15 43 белый
5 71 белый 16 6 желтый
6 11 желтый 17 56 белый
7 43 белый 18 5 желтый
8 13 желтый 19 43 белый
9 19 белый 20 5 желтый
10 10 желтый 21 56 белый
11 40 белый 22 4 желтый

Стоит, также, отметить увеличение количества выделяющегося газа при потемнении раствора.
Вывод: По зафиксированным данным можно судить о стабильном уменьшении времени нахождения в растворе четырехвалентного церия (что косвенно указывает на уменьшение pHсреды т.к. чем кислее среда, тем более сильным окислителем является церий и тем менее он устойчив).
Также обнаружена удивительная закономерность, так как во время протекания реакции колеблются не только концентрации промежуточных веществ, но и время периодов колебания (затухающее гармоническое колебание):

Реакция Бриггса-Раушера:
Для проведения реакции было приготовлено три раствора: сернокислый раствор йодата калия (с(KIO 3)=0,067 моль/л; с(H 2 SO 4)=0,053 моль/л) - 50мл, крахмальный раствор малоновой кислоты с добавлением каталитического количества сульфата марганца два (с(MnSO 4)=0,0067 моль/л; с(CH 2 (COOH) 2)=0,05 моль/л; крахмал 0,1%) - 25мл и семимолярный раствор пероксида водорода - 40мл. В химический стакан, в котором находился магнит, на 250 мл был налит раствор №1. Стакан был поставлен на, впоследствии включенную, магнитную мешалку и включено интенсивное перемешивание, чтобы смена окраски происходила резко. Затем, не прекращая перемешивание, было добавлено, одновременно и быстро, содержимое стаканов с растворами №2 и №3. Секундомером отмерено появление первого желтого окрашивания - индукционный период и начала появления голубых окрашиваний - период колебаний.

Индукционный период - 2 секунды.

1 2 3 4 5 6 7 8 9 10 11 12
Период, с 13 12 14 12 13 14 13 14 14 15 15 16
13 14 15 16 17 18 19 20 21 22 23 24
Период, с 16 16 17 17 17 18 17 18 17 18 18 17

Вывод: По мере протекания реакции наблюдается постепенное увеличение периода колебаний, что особенно хорошо заметно на графике:

Заключение
В данной работе были рассмотрены колебательные реакции и их свойства, в частности:

  1. Изучена область применения колебательных реакций в современном мире
  2. Изучена история колебательных реакций
  3. Разобраны механизмы двух колебательных реакций: Бриггса-Раушера
и Белоусова-Жаботинского
  1. Адаптирован механизм реакции Белоусова-Жаботинского для
рассмотрения лимонной кислоты в качестве восстановителя
  1. Проведен контрольный синтез, для наглядного ознакомления с колебательными реакциями.

Список использованной литературы

  1. Д.Гарел, О.Гарел «Колебательные химические реакции» перевод с английского Л.П. Тихоновой. Издательство «Мир» 1986 год. Стр. 13-25, 92-112.
  2. А.М. Жаботинский «Концентрационные автоколебания». Издательство «Наука» 1974 год. Стр. 87-89
  3. О.К. Первухин «Колебательные реакции. Методическое пособие». Издательство СПБГУ 1999 год. Стр. 3-11.
  4. С. П. МУШТАКОВА «Колебательные реакции в химии» Саратовский государственный университет им. Н.Г. Чернышевского
  5. «Исследование условий возникновения колебательного режима в процессе окислительного карбонилирования фенилацетилена». Стр. 2-4.
  6. И.Д. Икрамов, С.А. Мустафина. «АЛГОРИТМ ПОИСКА КОНСТАНТ СКОРОСТЕЙ КОЛЕБАТЕЛЬНОЙ РЕАКЦИИ НА ПРИМЕРЕ РЕАКЦИИ БЕЛОУСОВА-ЖАБОТИНСКОГО». Башкирский химический журнал 2015г.
  7. Печёнкин А.А. «Мировоззренческое значение колебательных химических реакций»
  8. Field R. J., Koros E., Noyes R. M., Oscillations in Chemical Sistems II. Thorough Analisis of Temperal Oscillations in the Bromat-Cerium-Malonic Acid Sistem., J. Amer. Chem. Soc., 94, 8649-8664 (1972).
  9. Noyes R. M.,Field R. J.,Koros E., J. Amer. Chem. Soc., 94, 1394-1395 (1972).


Чтобы скачать работу бесплатно нужно вступить в нашу группу ВКонтакте . Просто кликните по кнопке ниже. Кстати, в нашей группе мы бесплатно помогаем с написанием учебных работ.


Через несколько секунд после проверки подписки появится ссылка на продолжение загрузки работы.

Похожие публикации