Новая школа - Образовательный портал

Какие методы существуют для решения уравнения теплопроводности. Уравнение теплопроводности. Задача Коши для уравнения теплопроводности

Уравнение теплопроводности для нестационарного случая

нестационарным , если температура тела зависит как от положения точки, так и от времени.

Обозначим через и = и (М , t ) температуру в точке М однородного тела, ограниченного поверхностью S , в момент времени t . Известно, что количество теплоты dQ , поглощаемой за время dt , выражается равенством

где dS − элемент поверхности, k − коэффициент внутренней теплопроводности, − производная функции и по направлению внешней нормали к поверхности S . Так как распространяется в направлении понижения температуры, то dQ > 0, если > 0, и dQ < 0, если < 0.

Из равенства (1) следует

Теперь найдем Q другим способом. Выделим элемент dV объема V , ограниченного поверхностью S . Количество теплоты dQ , получаемой элементом dV за время dt , пропорционально повышению температуры в этом элементе и массе самого элемента, т.е.

где плотность вещества, коэффициент пропорциональности, называемый теплоемкостью вещества.

Из равенства (2) следует

Таким образом,

где . Учитывая, что = , , получим

Заменяя правую часть равенства с помощью формулы Остроградского – Грина, получим

для любого объема V . Отсюда получаем дифференциальное уравнение

которое называют уравнением теплопроводности для нестационарного случая .

Если тело есть стержень, направленный по оси Ох , то уравнение теплопроводности имеет вид

Рассмотрим задачу Коши для следующих случаев.

1. Случай неограниченного стержня. Найти решение уравнения (3) (t > 0, ), удовлетворяющее начальному условию . Используя метод Фурье, получим решение в виде

− интеграл Пуассона.

2. Случай стержня , ограниченного с одной стороны. Решение уравнения (3), удовлетворяющее начальному условию и краевому условию , выражается формулой

3. Случай стержня , ограниченного с двух сторон. Задача Коши состоит, чтобы при х = 0 и х = l найти решение уравнения (3), удовлетворяющее начальному условию и двум краевым условиям, например, или .

В этом случае частное решение ищется в виде ряда

для краевых условий ,

и в виде ряда

для краевых условий .

Пример. Найти решение уравнения

удовлетворяющее начальным условиям

и краевым условиям .

□ Решение задачи Коши будем искать в виде

Таким образом,

Уравнение теплопроводности для стационарного случая

Распределение тепла в теле называют стационарным , если температура тела и зависит от положения точки М (х , у , z ), но не зависит от времени t , т.е.


и = и (М ) = и (х , у , z ).

В этом случае 0 и уравнение теплопроводности для стационарного случая обращается в уравнение Лапласа

которое часто записывают в виде .

Чтобы температура и в теле определялась однозначно из этого уравнения, нужно знать температуру на поверхности S тела. Таким образом, для уравнения (1) краевая задача формулируется следующим образом.

Найти функцию и , удовлетворяющую уравнению (1) внутри объема V и принимающую в каждой точке М поверхности S заданные значения

Эта задача называется задачей Дирихле или первой краевой задачей для уравнения (1).

Если на поверхности тела температура неизвестна, а известен тепловой поток в каждой точке поверхности, который пропорционален , то на поверхности S вместо краевого условия (2) будем иметь условие

Задача нахождения решения уравнения (1), удовлетворяющего краевому условию (3), называется задачей Неймана или второй краевой задачей .

Для плоских фигур уравнение Лапласа записывается в виде

Такой же вид имеет уравнение Лапласа и для пространства, если и не зависит от координаты z , т.е. и (М ) сохраняет постоянное значение при перемещении точки М по прямой, параллельной оси Oz .

Заменой , уравнение (4) можно преобразовать к полярным координатам

С уравнением Лапласа связано понятие гармонической функции. Функция называется гармонической в области D , если в этой области она непрерывна вместе со своими производными до второго порядка включительно и удовлетворяет уравнению Лапласа.

Пример. Найти стационарное распределение температуры в тонком стержне с теплоизолированной боковой поверхностью, если на концах стержня , .

□ Имеем одномерный случай. Требуется найти функцию и , удовлетворяющую уравнению и краевым условиям , . Общее уравнение указанного уравнения имеет вид . Учитывая краевые условия, получим

Таким образом, распределение температуры в тонком стержне с теплоизолированной боковой поверхностью линейно. ■

Задача Дирихле для круга

Пусть дан круг радиуса R с центром в полюсе О полярной системы координат. Надо найти функцию , гармоническую в круге и удовлетворяющую на его окружности условию , где − заданная функция, непрерывная на окружности. Искомая функция должна удовлетворять в круге уравнению Лапласа

Используя метод Фурье, можно получить

− интеграл Пуассона.

Пример. Найти стационарное распределение температуры на однородной тонкой круглой пластинке радиуса R , верхняя половина поддерживается при температуре , а нижняя – при температуре .

□ Если , то , а если , то . Распределение температуры выражается интегралом

Пусть точка расположеиа в верхнем полукруге, т.е. ; тогда изменяется от до , и этот интервал длины не содержит точек . Поэтому введем подстановку , откуда , . Тогда получим

Так правая часть отрицательна, то и при удовлетворяет неравенствам . Для этого случая получаем решение

Если же точка расположена в нижнем полукруге, т.е. , то интервал изменения содержит точку , но не содержит 0, и можно сделать подстановку , откуда , , Тогда для этих значений имеем

Проведя аналогичные преобразования, найдем

Так как правая часть теперь положительна , то . ■

Метод конечных разностей для решения уравнения теплопроводности

Пусть требуется найти решение уравнения

удовлетворяющее:

начальному условию

и краевым условиям

Итак, требуется найти решение уравнения (1), удовлетворяющее условиям (2), (3), (4), т.е. требуется найти решение в прямоугольнике, ограниченном прямыми , , , , если заданы значения искомой функции на трех его сторонах , , .

Построим прямоугольную сетку, образованную прямыми

− шаг вдоль оси Ох ;

− шаг вдоль оси Оt .

Введем обозначения:

Из понятия конечных разностей можно записать

аналогично

Учитывая формулы (6), (7) и введенные обозначения, запишем уравнение (1) в виде

Отсюда получим расчетную формулу

Из (8) следует, что если известны три значения к k -ом слое сетки: , , , то можно определить значение в (k + 1)-ом слое.

Начальное условие (2) позволяет найти все значения на прямой ; краевые условия (3), (4) позволяют найти значения на прямых и . По формуле (8) находим значения во всех внутренних точках следующего слоя, т.е. для k = 1. Значения искомой функции в крайных точках известны из граничных условий (3), (4). Переходя от одного слоя сетки к другому, определяем значения искомого решения во всех узлах сетки. ;

При построении математической модели распространения тепла в стержне сделаем следующие предположения:

1) стержень сделан из однородного проводящего материала с плотностью ρ ;

2) боковая поверхность стержня теплоизолирована, то есть тепло может распространяться только вдоль осиОХ ;

3) стержень тонкий - это значит, что температура во всех точках любого поперечного сечения стержня одна и та же.

Рассмотрим часть стержня на отрезке [х, х + ∆х ] (см. рис. 6) и воспользуемся законом сохранения количества тепла:

Общее количество тепла на отрезке [х, х + ∆х ] = полному количеству тепла, прошедшему через границы + полное количество тепла, образованного внутренними источниками.

Общее количество тепла, которое необходимо сообщить участку стержня, чтобы повысить его температуру на ∆U , вычисляется по формуле: ∆Q=CρS∆x∆U , где С -удельная теплоемкость материала (=количеству тепла, которое нужно сообщить 1 кг вещества, чтобы поднять его температуру на 1°), S - площадь поперечного сечения.

Количество тепла, прошедшее через левый конец участка стержня за время ∆t (тепловой поток) вычисляется по формуле: Q 1 = -kSU x (x, t)∆t , где k - коэффициент теплопроводности материала (= количеству тепла, протекающего в секунду через стержень единичной длины и единичной площади поперечного сечения при разности температур на противоположных концах, равной 1°). В этой формуле особого пояснения требует знак минус. Дело в том, что поток считается положительным, если он направлен в сторону увеличения х , а это, в свою очередь, означает, что слева от точки х температура больше, чем справа, то есть U x < 0 . Следовательно, чтобыQ 1 был положительным, в формуле стоит знак минус.

Аналогично, тепловой поток через правый конец участка стержня вычисляется по формуле: Q 2 = -kSU x (x +∆x,t)∆t .

Если предположить, что внутренних источников тепла в стержне нет, и воспользоваться законом сохранения тепла, то получим:

∆Q = Q 1 - Q 2 => CpS∆x∆U = kSU x (x + ∆х, t) ∆t - kSU x (x, t)∆t .

Если это равенство поделить на S∆x∆t и устремить ∆х и ∆t к нулю, то будем иметь:

Отсюда уравнение теплопроводности имеет вид

U t =a 2 U xx ,

где - коэффициент температуропроводности.

В случае, когда внутри стержня имеются источники тепла, непрерывно распределенные с плотностью q(x,t) , получится неоднородное уравнение теплопроводности

U t = a 2 U xx + f(x,t) ,
где .

Начальные условия и граничные условия.

Для уравнения теплопроводности задается только одно начальное условие U| t=0 = φ(х) (или в другой записиU(x,0) = φ(х) ) и физически оно означает, что начальное распределение температуры стержня имеет вид φ(х) . Для уравнений теплопроводности на плоскости или в пространстве начальное условие имеет такой же вид, только функция φ будет зависеть, соответственно, от двух или трех переменных.

Граничные условия в случае уравнения теплопроводности имеют такой же вид, как и для волнового уравнения, но физический смысл их уже иной. Условия первого рода (5) означают, что на концах стержня задана температура. Если она не изменяется со временем, то g 1 (t) ≡ Т 1 и g 2 (t) ≡ Т 2 , где Т 1 и Т 2 - постоянные. Если концы поддерживаются все время при нулевой температуре, то Т 1 = Т 2 = 0 и условия будут однородными. Граничные условия второго рода (6) определяют тепловой поток на концах стержня. В частности, если g 1 (t) = g 2 (t) = 0 , то условия становятся однородными. Физически они означают, что через концы не происходит теплообмен с внешней средой (эти условия еще называют условиями теплоизоляции концов). Наконец, граничные условиятретьего рода (7) соответствуют случаю, когда через концы стержня происходит теплообмен с окружающей средой по закону Ньютона (напомним, что при выводе уравнения теплопроводности мы считали боковую поверхность теплоизолированной). Правда, в случае уравнения теплопроводности условия (7) записываются немного по-другому:

Физический закон теплообмена со средой (закон Ньютона) состоит в том, что поток тепла через единицу поверхности в единицу времени пропорционален разности температур тела и окружающей среды. Таким образом, для левого конца стержня он равен Здесь h 1 > 0 - коэффициент теплообмена с окружающей средой, g 1 (t) - температура окружающей среды на левом конце. Знак минус поставлен в формуле по той же причине, что и при выводе уравнения теплопроводности. С другой стороны, в силу теплопроводности материала поток тепла через этот же конец равен Применив закон сохранения количества тепла, получим:

Аналогично получается условие (14) на правом конце стержня, только постоянная λ 2 может быть другой, так как, вообще говоря, среды, окружающие левый и правый конец, бывают разные.

Граничные условия (14) являются более общими по сравнению с условиями первого и второго рода. Если предположить, что через какой-либо конец не происходит теплообмена со средой (то есть коэффициент теплообмена равен нулю), то получится условие второго рода. В другом случае предположим, что коэффициент теплообмена, например h 1 , очень большой.

Перепишем условие (14) при х = 0 в виде и устремим . В результате будем иметь условие первого рода:

Аналогично формулируются граничные условия и для большего числа переменных. Для задачи о распространении тепла в плоской пластине условие означает, что температура на ее краях поддерживается нулевой. Точно так же, условия и внешне очень похожи, но в первом случае оно означает, что рассматривается плоская пластина и края ее теплоизолированы, а во втором случае оно означает, что рассматривается задача о распространении тепла в теле и поверхность его теплоизолирована.

Решение первой начально-краевой задачи для уравнения теплопроводности.

Рассмотрим однородную первую начально-краевую задачу для уравнения теплопроводности:

Найти решение уравнения

U t = U xx , 00,

удолетворяющее граничным условиям

U(0,t) = U(l,t)=0, t>0 ,

и начальному условию

Решим эту задачу методом Фурье.

Шаг 1 . Будем искать решения уравнения (15) в виде U(x,t) = X(x)T(t) .

Найдем частные производные:

Подставим эти производные в уравнение и разделим переменные:

По основной лемме получим

Отсюда следует

Теперь можно решить каждое из этих обыкновенных дифференциальных уравнений. Обратим внимание на то, что используя граничные условия (16), можно искать не общее решение уравнения б), а частные решения, удолетворяющие соответствующим граничным условиям:

Шаг 2. Решим задачу Штурма-Лиувилля

Эта задача совпадает с задачей Штурма-Лиувилля, рассмотренной в лекции 3. Напомним, что собственные значения и собственные функции этой задачи существуют только при λ>0.

Собственные значения равны

Собственные функции равны (См. решение задачи)

Шаг 3. Подставим собственные значения в уравнение а) и решим его:

Шаг 4. Выпишем частные решения уравнения (15):

В силу линейности и однородности уравнения (15) их линейная комбинация

также будет решением этого уравнения, причем функция U(x,t) удолетворяет и граничным условиям (16).

Шаг 5. Определим коэффициенты A n в (19), используя начальное условие (17):

Приходим к тому, что начальная функция φ(x) разлагается в ряд Фурье по собственным функциям задачи Штурма-Лиувилля. По теореме Стеклова такое разложение возможно для функций, удовлетворяющих граничным условиям и имеющих непрерывные производные второго порядка. Коэффициенты Фурье находятся по формулам


Похожая информация.


Изучение любого физического явления сводится к установлению зависимости между величинами, характеризующими это явление. Для сложных физических процессов, в которых определяющие величины могут существенно изменяться в пространстве и времени, установить зависимость между этими величинами достаточно сложно. В таких случаях используют методы математической физики, которые заключаются в том, что ограничивается промежуток времени и из всего пространства рассматривается некоторый элементарный объем. Это позволяет в пределах выбранного объема и данного промежутка времени пренебречь изменениями величин, характеризующих процесс, и существенно упростить зависимость.

Выбранные таким образом элементарный объем dV и элементарный промежуток времени , в пределах которых рассматривается процесс, с математической точки зрения являются величинами бесконечно малыми, а с физической точки зрения – величинами еще достаточно большими, чтобы в их пределах можно было считать среду как сплошную, пренебрегая ее дискретным строением. Полученная таким образом зависимость является общим дифференциальным уравнением процесса. Интегрируя дифференциальные уравнения, можно получить аналитическую зависимость между величинами для всей области интегрирования и всего рассматриваемого промежутка времени.

Для решения задач, связанных с нахождением температурного поля, необходимо иметь дифференциальное уравнение теплопроводности.

Примем следующие допущения:

    тело однородно и изотропно;

    физические параметры постоянны;

    деформация рассматриваемого объема, связанная с изменением температуры, очень мала по сравнению с самим объемом;

    внутренние источники теплоты в теле, распределены равномерно.

В основу вывода дифференциального уравнения теплопроводности положим закон сохранения энергии, который сформулируем так:

Количество теплоты dQ , введенное в элементарный объем dV извне за время вследствие теплопроводности, а также от внутренних источников, равно изменению внутренней энергии или энтальпии вещества, содержащегося в элементарном объеме.

где dQ 1 – количество теплоты, введенное в элементарный объем dV путем теплопроводности за время ;

dQ 2 – количество теплоты, которое за время выделилось в элементарном объеме dV за счет внутренних источников;

dQ – изменение внутренней энергии (изохорный процесс) или энтальпии вещества (изобарный процесс), содержащегося в элементарном объеме dV за время .

Для получения уравнения рассмотрим элементарный объем в виде кубика со сторонами dx , dy , dz (см. рис.1.2.). Кубик расположен так, чтобы его грани были параллельны соответствующим координатным плоскостям. Количество теплоты, которое подводится к граням элементарного объема за время в направлении осей x , y , z обозначим соответственно dQ x , dQ y , dQ z .

Количество теплоты, которое будет отводиться через противоположные грани в тех же направлениях, обозначим соответственно dQ x + dx , dQ y + dy , dQ z + dz .

Количество теплоты, подведенное к грани dxdy в направлении оси x за время , составляет:

где q x – проекция плотности теплового потока на направление нормали к указанной грани. Соответственно количество теплоты, отведенное через противоположную грань будет:

Разница между количеством теплоты, подведенном к элементарному объему, и количеством теплоты, отведенного от него, представляет собой теплоту:

Функция q является непрерывной в рассматриваемом интервале dx и может быть разложена в ряд Тейлора:

Если ограничиться двумя первыми слагаемыми ряда, то уравнение запишется в виде:

Аналогичным образом можно найти количество теплоты, подводимое к объему в направлении двух других координатных осей y и z .

Количество теплоты dQ , подведенное в результате теплопроводности к рассматриваемому объему, будет равно:

Второе слагаемое определим, обозначив количество теплоты, выделяемое внутренними источниками в единице объема среды в единицу времени q v и назовем его мощностью внутренних источников теплоты [Вт/м 3 ], тогда:

Третья составляющая в нашем уравнении найдется в зависимости от характера ТД процесса изменения системы.

При рассмотрении изохорного процесса вся теплота, подведенная к элементарному объему, уйдет на изменение внутренней энергии вещества, заключенного в этом объеме, т.е. dQ = dU .

Если рассматривать внутреннюю энергию единицы объема u = f (t , v ) , то можно записать:

, Дж/м 3

, Дж/кг

где c v изохорная теплоемкость или единицы объема или единицы массы, [Дж/м 3 ];

ρ – плотность, [кг/м 3 ].

Соберем полученные выражения:

Полученное выражение является дифференциальным уравнением энергии для изохорного процесса переноса теплоты .

Аналогично выводится уравнение для изобарного процесса. Вся теплота, подведенная к объему уйдет на изменение энтальпии вещества, заключенного в объеме.

Полученное соотношение является дифференциальным уравнением энергии для изобарного процесса.

В твердых телах перенос теплоты осуществляется по закону Фурье
, значение теплоемкости можно принять
. Напомним, что проекция вектора плотности теплового потока на координатные оси определяются выражениями:



Последнее выражение называют дифференциальным уравнением теплопроводности. Оно устанавливает связь между временным и пространственным изменениями температуры в любой точке тела, в котором происходит процесс теплопроводности.

Наиболее общее дифференциальное уравнение теплопроводности в частных производных имеет такую же форму, но в нем величины ρ , , с являются функциями времени и пространства. Это уравнение описывает большое количество задач теплопроводности, представляющих практический интерес. Если принять теплофизические параметры постоянными, то уравнение будет проще:

Обозначим
, тогда:

Коэффициент пропорциональности а [м 2 /с] называется коэффициентом температуропроводности и является физическим параметром вещества. Он существенен для нестационарных тепловых процессов характеризует скорость изменения температуры. Если коэффициент теплопроводности характеризует способность тел проводить теплоту, то коэффициент температуропроводности является мерой теплоинерционных свойств тела. Например, жидкости и газы обладают большей тепловой инерционностью и, следовательно, малым коэффициентом температуропроводности, а металлы наоборот имеют малую тепловую инерционность.

Если имеются внутренние источники теплоты, а температурное поле является стационарным, то мы получаем уравнение Пуассона:

Наконец, при стационарной теплопроводности и отсутствии внутренних источников теплоты мы получаем уравнение Лапласа:

Условия однозначности для теплопроводности.

Так как дифференциальное уравнение теплопроводности выведено из общих законов физики, то оно описывает целый класс явлений. Для его решения необходимо задать граничные условия или условия однозначности.

Условия однозначности включают:

    геометрические условия – характеризуют форму и размеры тела;

    физические условия – характеризуют физические свойства среды и тела;

    начальные (временные) условия – характеризуют распределение температур в теле в начальный момент времени, задаются при исследовании нестационарных процессов;

    граничные условия – характеризуют взаимодействие рассматриваемого тела с окружающей средой.

Граничные условия могут быть заданы несколькими способами.

Граничные условия первого рода. Задается распределение температуры на поверхности тела для каждого момента времени:

t c = f (x , y , z , τ )

где t c – температура на поверхности тела;

x , y , z – координаты поверхности тела.

В частном случае, когда температура на поверхности является постоянной на протяжении всего времени протекания процессов теплообмена, уравнение упрощается:

t c = const

Граничные условия второго рода. Задаются значения теплового потока для каждой точки поверхности тела и любого момента времени. Аналитически выглядит так:

q c = f (x , y , z , τ )

В простейшем случае плотность теплового потока по поверхности тела остается постоянной. Такой случай имеет место при нагревании металлических изделий в высокотемпературных печах.

Граничные условия третьего рода. При этом задаются температура окружающей среды t ср и закон теплообмена между поверхностью тела и средой. Для описания процесса теплообмена используется закон Ньютона-Рихмана. Согласно этому закону количество теплоты, отдаваемое или принимаемое единицей поверхности тела в единицу времени, пропорционально разности температур поверхности тела и среды:

где α коэффициент пропорциональности, называется коэффициентом теплоотдачи [Вт/(м 2 ·К)], характеризует интенсивность теплообмена. Численно он равен количеству теплоты, отдаваемому единицей поверхности тела в единицу времени при разности температур равной одному градусу. Согласно закону сохранения энергии количество теплоты, которое отводится окружающей среде, должно равняться теплу, подводимому вследствие теплопроводности из внутренних частей тела, то есть:

Последнее уравнение является граничным условием третьего рода.

Встречаются более сложные технические задачи, когда ни одно из перечисленных условий задать невозможно, и тогда приходится решать задачу методом сопряжения. При решении такой задачи должны выполняться условия равенства температур и тепловых потоков по обе стороны от границы раздела. В общем случае условия сопряженности можно записать:

Решение сопряженной задачи связано с нахождением температурных полей по обе стороны границы раздела.

Механика сплошных сред
Сплошная среда
См. также: Портал:Физика

Уравнение диффузии представляет собой частный вид дифференциального уравнения в частных производных. Бывает нестационарным и стационарным.

В смысле интерпретации при решении уравнения диффузии речь идет о нахождении зависимости концентрации вещества (или иных объектов) от пространственных координат и времени, причем задан коэффициент (в общем случае также зависящий от пространственных координат и времени), характеризующий проницаемость среды для диффузии. При решении уравнения теплопроводности речь идет о нахождении зависимости температуры среды от пространственных координат и времени, причем задана теплоёмкость и теплопроводность среды (также в общем случае неоднородной).

Физически в том и другом случае предполагается отсутствие или пренебрежимость макроскопических потоков вещества. Таковы физические рамки применимости этих уравнений. Также, представляя непрерывный предел указанных задач (то есть не более, чем некоторое приближение), уравнение диффузии и теплопроводности в общем не описывают статистических флуктуаций и процессов, близких по масштабу к длине и времени свободного пробега, также весьма сильно отклоняясь от предполагаемого точного решения задачи в том, что касается корреляций на расстояниях, сравнимых (и больших) с расстояниями, проходимыми звуком (или свободными от сопротивления среды частицами при их характерных скоростях) в данной среде за рассматриваемое время.

Это в подавляющей части случаев сразу же означает и то, что уравнения диффузии и теплопроводности по области применимости далеки от тех областей, где становятся существенными квантовые эффекты или конечность скорости света, то есть в подавляющей части случаев не только по своему выводу, но и принципиально, ограничиваются областью классической ньютоновской физики.

  • В задачах диффузии или теплопроводности в жидкостях и газах, находящихся в движении, вместо уравнения диффузии применяется уравнение переноса , расширяющее уравнение диффузии на тот случай, когда пренебрежением макроскопическим движением недопустимо.
  • Ближайшим формальным, а во многом и содержательным, аналогом уравнения диффузии является уравнение Шрёдингера , отличающееся от уравнения диффузии множителем мнимая единица перед производной по времени. Многие теоремы о решении уравнения Шрёдингера и даже некоторые виды формальной записи его решений прямо аналогичны соответствующим теоремам об уравнении диффузии и его решениях, однако качественно их решения различаются очень сильно.

Общий вид

Уравнение обычно записывается так:

∂ φ (r , t) ∂ t = ∇ ⋅ [ D (φ , r) ∇ φ (r , t) ] , {\displaystyle {\frac {\partial \varphi (\mathbf {r} ,t)}{\partial t}}=\nabla \cdot {\big [}D(\varphi ,\mathbf {r})\ \nabla \varphi (\mathbf {r} ,t){\big ]},}

где φ(r , t ) - плотность диффундирующего вещества в точке r и во время t и D (φ, r ) - обобщённый коэффициент диффузии для плотности φ в точке r ; ∇ - оператор набла . Если коэффициент диффузии зависит от плотности - уравнение нелинейно, в противном случае - линейно.

Если D - симметричный положительно определённый оператор , уравнение описывает анизотропную диффузию:

∂ φ (r , t) ∂ t = ∑ i = 1 3 ∑ j = 1 3 ∂ ∂ x i [ D i j (φ , r) ∂ φ (r , t) ∂ x j ] . {\displaystyle {\frac {\partial \varphi (\mathbf {r} ,t)}{\partial t}}=\sum _{i=1}^{3}\sum _{j=1}^{3}{\frac {\partial }{\partial x_{i}}}\left.}

Если D постоянное, то уравнение сводится к линейному дифференциальному уравнению:

∂ ϕ (r , t) ∂ t = D ∇ 2 ϕ (r , t) , {\displaystyle {\frac {\partial \phi (\mathbf {r} ,t)}{\partial t}}=D\nabla ^{2}\phi (\mathbf {r} ,t),}

История происхождения

Нестационарное уравнение

Нестационарное уравнение диффузии классифицируется как параболическое дифференциальное уравнение . Оно описывает распространение растворяемого вещества вследствие диффузии или перераспределение температуры тела в результате теплопроводности .

Одномерный случай

В случае одномерного диффузионного процесса с коэффициентом диффузии (теплопроводности) D {\displaystyle D} уравнение имеет вид:

∂ ∂ t c (x , t) = ∂ ∂ x D ∂ ∂ x c (x , t) + f (x , t) . {\displaystyle {\frac {\partial }{\partial t}}c(x,\;t)={\frac {\partial }{\partial x}}D{\frac {\partial }{\partial x}}{c(x,\;t)}+f(x,\;t).}

При постоянном D {\displaystyle D} приобретает вид:

∂ ∂ t c (x , t) = D ∂ 2 ∂ x 2 c (x , t) + f (x , t) , {\displaystyle {\frac {\partial }{\partial t}}c(x,\;t)=D{\frac {\partial ^{2}}{\partial x^{2}}}{c(x,\;t)}+f(x,\;t),}

где c (x , t) {\displaystyle c(x,\;t)} - концентрация диффундирующего вещества, a f (x , t) {\displaystyle f(x,\;t)} - функция, описывающая источники вещества (тепла).

Трёхмерный случай

В трёхмерном случае уравнение приобретает вид:

∂ ∂ t c (r → , t) = (∇ , D ∇ c (r → , t)) + f (r → , t) , {\displaystyle {\frac {\partial }{\partial t}}c({\vec {r}},\;t)=(\nabla ,\;D\nabla c({\vec {r}},\;t))+f({\vec {r}},\;t),}

где ∇ = (∂ x , ∂ y , ∂ z) {\displaystyle \nabla =(\partial _{x},\;\partial _{y},\;\partial _{z})} - оператор набла , а (,) {\displaystyle (\;,\;)} - скалярное произведение. Оно также может быть записано как

∂ t c = d i v (D g r a d c) + f , {\displaystyle \partial _{t}c=\mathbf {div} \,(D\,\mathbf {grad} \,c)+f,}

а при постоянном D {\displaystyle D} приобретает вид:

∂ ∂ t c (r → , t) = D Δ c (r → , t) + f (r → , t) , {\displaystyle {\frac {\partial }{\partial t}}c({\vec {r}},\;t)=D\Delta c({\vec {r}},\;t)+f({\vec {r}},\;t),}

где Δ = ∇ 2 = ∂ 2 ∂ x 2 + ∂ 2 ∂ y 2 + ∂ 2 ∂ z 2 {\displaystyle \Delta =\nabla ^{2}={\frac {\partial ^{2}}{\partial x^{2}}}+{\frac {\partial ^{2}}{\partial y^{2}}}+{\frac {\partial ^{2}}{\partial z^{2}}}} - оператор Лапласа .

n -мерный случай

N {\displaystyle n} -мерный случай - прямое обобщение приведенного выше, только под оператором набла, градиентом и дивергенцией, а также под оператором Лапласа надо понимать n {\displaystyle n} -мерные версии соответствующих операторов:

∇ = (∂ 1 , ∂ 2 , … , ∂ n) , {\displaystyle \nabla =(\partial _{1},\;\partial _{2},\;\ldots ,\;\partial _{n}),} Δ = ∇ 2 = ∂ 1 2 + ∂ 2 2 + … + ∂ n 2 . {\displaystyle \Delta =\nabla ^{2}=\partial _{1}^{2}+\partial _{2}^{2}+\ldots +\partial _{n}^{2}.}

Это касается и двумерного случая n = 2 {\displaystyle n=2} .

Мотивация

A.

Обычно уравнение диффузии возникает из эмпирического (или как-то теоретически полученного) уравнения, утверждающего пропорциональность потока вещества (или тепловой энергии) разности концентраций (температур) областей, разделённых тонким слоем вещества заданной проницаемости, характеризуемой коэффициентом диффузии (или теплопроводности):

Φ = − ϰ ∂ c ∂ x {\displaystyle \Phi =-\varkappa {\frac {\partial c}{\partial x}}} (одномерный случай), j = − ϰ ∇ c {\displaystyle \mathbf {j} =-\varkappa \nabla c} (для любой размерности),

в сочетании с уравнением непрерывности, выражающим сохранение вещества (или энергии):

∂ c ∂ t + ∂ Φ ∂ x = 0 {\displaystyle {\frac {\partial c}{\partial t}}+{\frac {\partial \Phi }{\partial x}}=0} (одномерный случай), ∂ c ∂ t + d i v j = 0 {\displaystyle {\frac {\partial c}{\partial t}}+\mathrm {div} \,\mathbf {j} =0} (для любой размерности),

с учетом в случае уравнения теплопроводности ещё теплоёмкости (температура = плотность энергия / удельная теплоемкость).

  • Здесь источник вещества (энергии) в правой части опущен, но он, конечно же, может быть легко туда помещён, если в задаче есть приток (отток) вещества (энергии).
  • Также предполагается, что на поток диффундирующего вещества (примеси) не действуют никакие внешние силы, в том числе сила тяжести (пассивная примесь).

B.

Кроме того, оно естественно возникает как непрерывный предел аналогичного разностного уравнения, возникающего в свою очередь при рассмотрении задачи о случайном блуждании на дискретной решётке (одномерной или n {\displaystyle n} -мерной). (Это простейшая модель; в более сложных моделях случайных блужданий уравнение диффузии также возникает в непрерывном пределе). Простейшей интерпретацией функции c {\displaystyle c} в этом случае служит количество (или концентрация) частиц в данной точке (или вблизи неё), причём каждая частица движется независимо от остальных без памяти (инерции) своего прошлого (в несколько более сложном случае - с ограниченной по времени памятью).

Решение

c (x , t) = ∫ − ∞ + ∞ c (x ′ , 0) c f (x − x ′ , t) d x ′ = ∫ − ∞ + ∞ c (x ′ , 0) 1 4 π D t exp ⁡ (− (x − x ′) 2 4 D t) d x ′ . {\displaystyle c(x,\;t)=\int \limits _{-\infty }^{+\infty }c(x",\;0)c_{f}(x-x",\;t)\,dx"=\int \limits _{-\infty }^{+\infty }c(x",\;0){\frac {1}{\sqrt {4\pi Dt}}}\exp \left(-{\frac {(x-x")^{2}}{4Dt}}\right)\,dx".}

Физические замечания

Так как приближение, реализуемое уравнениями диффузии и теплопроводности, принципиально ограничивается областью низких скоростей и макроскопических масштабов (см. выше), то неудивительно, что их фундаментальное решение на больших расстояниях ведёт себя не слишком реалистично, формально допуская бесконечное распространение воздействия в пространстве за конечное время; надо при этом заметить, что величина этого воздействия так быстро убывает с расстоянием, что этот эффект как правило в принципе ненаблюдаем (например, речь идёт о концентрациях много меньше единицы).

Впрочем, если речь идёт о ситуациях, когда могут быть экспериментально измерены столь маленькие концентрации, и это для нас существенно, нужно пользоваться по меньшей мере не дифференциальным, а разностным уравнением диффузии, а лучше - и более подробными микроскопической физической и статистической моделями, чтобы получить более адекватное представление о реальности в этих случаях.

Стационарное уравнение

В случае, когда ставится задача по нахождению установившегося распределения плотности или температуры (например, в случае, когда распределение источников не зависит от времени), из нестационарного уравнения выбрасывают члены уравнения, связанные со временем. Тогда получается стационарное уравнение теплопроводности , относящееся к классу эллиптических уравнений . Его общий вид:

− (∇ , D ∇ c (r →)) = f (r →) . {\displaystyle -(\nabla ,\;D\nabla c({\vec {r}}))=f({\vec {r}}).} Δ c (r →) = − f (r →) D , {\displaystyle \Delta c({\vec {r}})=-{\frac {f({\vec {r}})}{D}},} Δ c (r →) = 0. {\displaystyle \Delta c({\vec {r}})=0.}

Постановка краевых задач

  • Задача с начальными условиями (задача Коши) о распределении температуры на бесконечной прямой

Если рассматривать процесс теплопроводности в очень длинном стержне, то в течение небольшого промежутка времени влияние температур на границах практически отсутствует, и температура на рассматриваемом участке зависит лишь от начального распределения температур.

и , удовлетворяющее условию u (x , t 0) = φ (x) (− ∞ < x < + ∞) {\displaystyle u(x,\;t_{0})=\varphi (x)\quad (-\infty , где - заданная функция.

  • Первая краевая задача для полубесконечного стержня

Если интересующий нас участок стержня находится вблизи одного конца и значительно удалён от другого, то мы приходим к краевой задаче, в которой учитывается влияние лишь одного из краевых условий.

Найти решение уравнения теплопроводности в области − ∞ ⩽ x ⩽ + ∞ {\displaystyle -\infty \leqslant x\leqslant +\infty } и t ⩾ t 0 {\displaystyle t\geqslant t_{0}} , удовлетворяющее условиям

{ u (x , t 0) = φ (x) , (0 < x < ∞) u (0 , t) = μ (t) , (t ⩾ t 0) {\displaystyle \left\{{\begin{array}{l}u(x,\;t_{0})=\varphi (x),\quad (0

где φ (x) {\displaystyle \varphi (x)} и μ (t) {\displaystyle \mu (t)} - заданные функции.

  • Краевая задача без начальных условий

Если момент времени который нас интересует достаточно удалён от начального, то имеет смысл пренебречь начальными условиями, поскольку их влияние на процесс с течением времени ослабевает. Таким образом, мы приходим к задаче, в которой заданы краевые условия и отсутствуют начальные.

Найти решение уравнения теплопроводности в области 0 ⩽ x ⩽ l {\displaystyle 0\leqslant x\leqslant l} и − ∞ < t {\displaystyle -\infty , удовлетворяющее условиям

{ u (0 , t) = μ 1 (t) , u (l , t) = μ 2 (t) , {\displaystyle \left\{{\begin{array}{l}u(0,\;t)=\mu _{1}(t),\\u(l,\;t)=\mu _{2}(t),\end{array}}\right.}

где и - заданные функции.

  • Краевые задачи для ограниченного стержня

Рассмотрим следующую краевую задачу:

u t = a 2 u x x + f (x , t) , 0 < x < l , 0 < t ⩽ T {\displaystyle u_{t}=a^{2}u_{xx}+f(x,\;t),\quad 0 - уравнение теплопроводности.

Если f (x , t) = 0 {\displaystyle f(x,\;t)=0} , то такое уравнение называют однородным , в противном случае - неоднородным .

u (x , 0) = φ (x) , 0 ⩽ x ⩽ l {\displaystyle u(x,\;0)=\varphi (x),\quad 0\leqslant x\leqslant l} - начальное условие в момент времени t = 0 {\displaystyle t=0} , температура в точке x {\displaystyle x} задается функцией φ (x) {\displaystyle \varphi (x)} . u (0 , t) = μ 1 (t) , u (l , t) = μ 2 (t) , } 0 ⩽ t ⩽ T {\displaystyle \left.{\begin{array}{l}u(0,\;t)=\mu _{1}(t),\\u(l,\;t)=\mu _{2}(t),\end{array}}\right\}\quad 0\leqslant t\leqslant T} - краевые условия. Функции μ 1 (t) {\displaystyle \mu _{1}(t)} и μ 2 (t) {\displaystyle \mu _{2}(t)} задают значение температуры в граничных точках 0 и l {\displaystyle l} в любой момент времени t {\displaystyle t} .

В зависимости от рода краевых условий, задачи для уравнения теплопроводности можно разбить на три типа. Рассмотрим общий случай ( α i 2 + β i 2 ≠ 0 , (i = 1 , 2) {\displaystyle \alpha _{i}^{2}+\beta _{i}^{2}\neq 0,\;(i=1,\;2)} ).

α 1 u x (0 , t) + β 1 u (0 , t) = μ 1 (t) , α 2 u x (l , t) + β 2 u (l , t) = μ 2 (t) . {\displaystyle {\begin{array}{l}\alpha _{1}u_{x}(0,\;t)+\beta _{1}u(0,\;t)=\mu _{1}(t),\\\alpha _{2}u_{x}(l,\;t)+\beta _{2}u(l,\;t)=\mu _{2}(t).\end{array}}}

Если α i = 0 , (i = 1 , 2) {\displaystyle \alpha _{i}=0,\;(i=1,\;2)} , то такое условие называют условием первого рода , если β i = 0 , (i = 1 , 2) {\displaystyle \beta _{i}=0,\;(i=1,\;2)} - второго рода , а если α i {\displaystyle \alpha _{i}} и β i {\displaystyle \beta _{i}} отличны от нуля, то условием третьего рода . Отсюда получаем задачи для уравнения теплопроводности - первую, вторую и третью краевую.

Принцип максимума

Пусть функция в пространстве D × [ 0 , T ] , D ∈ R n {\displaystyle D\times ,\;D\in \mathbb {R} ^{n}} , удовлетворяет однородному уравнению теплопроводности ∂ u ∂ t − a 2 Δ u = 0 {\displaystyle {\frac {\partial u}{\partial t}}-a^{2}\Delta u=0} , причем D {\displaystyle D} - ограниченная область. Принцип максимума утверждает, что функция u (x , t) {\displaystyle u(x,\;t)} может принимать экстремальные значения либо в начальный момент времени, либо на границе области D {\displaystyle D} .

Примечания

Решение дифференциального уравнения теплопроводности при действии мгновенного сосредоточенного источника в неограниченной среде называется фундаментальным решением.

Мгновенный точечный источник

Для бесконечного тела, в начале координат которого действует мгновенный точечный источник, решение дифференциального уравнения теплопроводности следующее:

где T - температура точки с координатами x,y,z; Q - количество тепла, выделившееся в момент t = 0 в начале координат; t - время, прошедшее с момента введения тепла; R - расстояние от начала координат, где действует источник, до рассматриваемой точки (радиус - вектор). У равнение (4) является фундаментальным решением уравнения теплопроводности при действии мгновенного точечного источника в бесконечном теле.

В любой момент t ? 0 температура самого источника (R = 0) отлична от нуля и с течением времени уменьшается по закону t -3/2 , оставаясь выше температур других точек тела. Вместе с удалением от источника температура понижается по закону нормального распределения exp(-R 2 /4at). Изотермическими поверхностями являются сферы с центром в источнике, и температурное поле в данный момент времени зависит лишь от радиуса. В начальный момент времени (t = 0) температура не определена (T = ?), что связано со схемой сосредоточенного источника, в котором в бесконечно малом объеме в начальный момент времени содержится конечное количество тепла Q.

На основе решения для бесконечного тела (4) можно вывести уравнение температурного поля для схемы полубесконечного тела, которая применяется для описания тепловых процессов в массивных изделиях. Пусть в полубесконечном теле, ограниченном поверхность S - S действует мгновенный точечный источник Д (рис. 4). Для массивных тел тепловые потоки внутри значительно больше потока теплоотдачи с поверхности. Поэтому поверхность полубесконечного тела можно считать адиабатической границей, для которой (см.п. 1.4)

Дополним полубесконечную область z > 0 до бесконечной, дбавив область z < 0. В образовавшемся объеме введем дополнительный (фиктивный) источник нагрева Ф(-z), идентичный действительному источнику Д(z), но расположенный симметрично по другую сторону границы S. На рис. 4 приведено распределение температур в бесконечном теле отдельно для действительного (T Д) и фиктивного (T ф) источников. Суммарная температура от обоих источников T = T Д + T ф. При этом на границе, что соответствует определению адиабатической границы (5). Если действительный источник находится на поверхности полубесконечного тела, то фиктивный с ним совпадает, и T=2T Д. Тогда температурное поле мгновенного точечного источника на поверхности полубесконечного тела

По такой же схеме моделируется и изотермическая граница (граничное условие 1-го рода) T S =0, но в этом случае T = T Д - T Ф. Следует подчеркнуть, что источник нагрева не может действовать на изотермической поверхности.

Графическое изображение температурного поля (6) требует четкого понимания пространственного положения поверхности, на которой строится распределение температуры. В декартовой системе координат (x, y, z) контрольными сечениями полубесконечного тела при действии точечного источника являются плоскости xy, xz и yz (рис. 5, а). Для полубесконечного тела изотермические поверхности являются полусферами (температура зависит от радиуса - вектора R). В плоскости xy изотермы, как сечение поверхности плоскостью

z=const, являются окружностями, а в других плоскостях - полуокружностями (рис. 5, б). Температурное поле мгновенного точечного источника в разные моменты времени представлено на рис. (6) (см. П 1.1.). На рисунке температура графически ограничена значением T=1000K|.

Температура в любой точке вне источника сначала возрастает, а затем убывает (рис.1.3). Момент достижения максимального значения температуры в данной точке найдется из условия

Дифференцируя выражение (6) по времени, получаем формулу для определения времени, когда температура максимальна

Максимальные темперы точек полубесконечного тела при действии точечного источника уменьшаются с расстоянием как R 3 .

Похожие публикации