Новая школа - Образовательный портал

Как исследовать тригонометрическую функцию на периодичность. Как найти период тригонометрической функции. Выражения через синус и косинус

Тригонометрические функции периодичны , то есть повторяются через определенный период. Вследствие этому довольно изучать функцию на этом интервале и распространить обнаруженные свойства на все остальные периоды.

Инструкция

1. Если вам дано примитивное выражение, в котором присутствует лишь одна тригонометрическая функция (sin, cos, tg, ctg, sec, cosec), причем угол внутри функции не умножен на какое-нибудь число, а она сама не возведена в какую-нибудь степень – воспользуйтесь определением. Для выражений, содержащих sin, cos, sec, cosec отважно ставьте период 2П, а если в уравнении есть tg, ctg – то П. Скажем, для функции у=2 sinх+5 период будет равен 2П.

2. Если угол х под знаком тригонометрической функции умножен на какое-нибудь число, то, дабы обнаружить период данной функции, поделите типовой период на это число. Скажем, вам дана функция у= sin 5х. Типовой период для синуса – 2П, поделив его на 5, вы получите 2П/5 – это и есть желанный период данного выражения.

3. Дабы обнаружить период тригонометрической функции, возведенной в степень, оцените четность степени. Для четной степени уменьшите типовой период в два раза. Скажем, если вам дана функция у=3 cos^2х, то типовой период 2П уменьшится в 2 раза, таким образом, период будет равен П. Обратите внимание, функции tg, ctg в всякий степени периодичны П.

4. Если вам дано уравнение, содержащее произведение либо частное 2-х тригонометрических функций, вначале обнаружьте период для всей из них отдельно. После этого обнаружьте минимальное число, которое умещало бы в себе целое число обоих периодов. Скажем, дана функция у=tgx*cos5x. Для тангенса период П, для косинуса 5х – период 2П/5. Минимальное число, в которое дозволено уместить оба этих периода, это 2П, таким образом, желанный период – 2П.

5. Если вы затрудняетесь делать предложенным образом либо сомневаетесь в результате, попытайтесь делать по определению. Возьмите в качестве периода функции Т, он огромнее нуля. Подставьте в уравнение взамен х выражение (х+Т) и решите полученное равенство, как если бы Т было параметром либо числом. В итоге вы обнаружите значение тригонометрической функции и сумеете подобрать наименьший период. Скажем, в итоге облегчения у вас получилось тождество sin (Т/2)=0. Минимальное значение Т, при котором оно выполняется, равно 2П, это и будет результат задачи.

Периодической функцией именуется функция, повторяющая свои значения через какой-то ненулевой период. Периодом функции именуется число, при добавление которого к доводу функции значение функции не меняется.

Вам понадобится

  • Знания по элементарной математике и началам обзора.

Инструкция

1. Обозначим период функции f(x) через число К. Наша задача обнаружить это значение К. Для этого представим, что функция f(x), пользуясь определением периодической функции, приравняем f(x+K)=f(x).

2. Решаем полученное уравнение касательно неведомой K, так, как словно x – константа. В зависимости от значения К получится несколько вариантов.

3. Если K>0 – то это и есть период вашей функции.Если K=0 – то функция f(x) не является периодической.Если решение уравнения f(x+K)=f(x) не существует ни при каком K не равном нулю, то такая функция именуется апериодической и у неё тоже нет периода.

Видео по теме

Обратите внимание!
Все тригонометрические функции являются периодическими, а все полиномиальные со степенью огромнее 2 – апериодическими.

Полезный совет
Периодом функции, состоящей из 2-х периодический функций, является Наименьшее всеобщее кратное периодов этих функций.

Тригонометрические уравнения – это уравнения, которые содержат в себе тригонометрические функции неведомого довода (для примера: 5sinx-3cosx =7). Дабы обучиться решать их – необходимо знать некоторые для этого способы.

Инструкция

1. Решение таких уравнения состоит из 2-х этапов.Первое – реформирование уравнения для приобретения его простейшего вида. Простейшими тригонометрическими уравнениями именуются такие: Sinx=a; Cosx=a и т.д.

2. Второе – это решение полученного простейшего тригонометрического уравнения. Существует основные способы решения уравнений такого вида:Решение алгебраическим способом. Данный способ классно знаменит из школы, с курса алгебры. По иному называют способом замены переменной и подстановки. Применяя формулы приведения, преобразуем, делаем замену, позже чего находим корни.

3. Разложение уравнения на множители. Вначале переносим все члены налево и раскладываем на множители.

4. Приведение уравнение к однородному. Однородными уравнениями называют уравнения, если все члены одной и той же степени и синус, косинус одного и того же угла.Дабы его решить, следует: вначале перенести все его члены из правой части в левую часть; перенести все всеобщие множители за скобки; приравнять множители и скобки нулю; приравненные скобки дают однородное уравнение меньшей степени, что следует поделить на cos (либо sin) в старшей степени; решить полученное алгебраическое уравнение касательно tan.

5. Дальнейший способ – переход к половинному углу. Скажем, решить уравнение: 3 sin x – 5 cos x = 7.Переходим к половинному углу: 6 sin (x / 2) · cos (x / 2) – 5 cos ? (x / 2) + 5 sin ? (x / 2) = 7 sin ? (x / 2) + 7 cos ? (x/ 2) , позже чего все члены сводим в одну часть (отличнее в правую) и решаем уравнение.

6. Вступление вспомогательного угла. Когда мы заменяем целое значение cos(а) либо sin(а). Знак «а» – вспомогательный угол.

7. Способ реформирования произведения в сумму. Здесь нужно применять соответствующие формулы. Скажем дано: 2 sin x · sin 3x = cos 4x.Решим ее, преобразовав левую часть в сумму, то есть:cos 4x – cos 8x = cos 4x ,cos 8x = 0 ,8x = p / 2 + pk ,x = p / 16 + pk / 8.

8. Конечный способ, называемый многофункциональной подстановкой. Мы преобразовываем выражение и делаем замену, скажем Cos(x/2)=u, позже чего решаем уравнение с параметром u. При приобретении итога переводим значение в обратное.

Видео по теме

Если рассматривать точки на окружности, то точки x, x + 2π, x + 4π и т.д. совпадают друг с ином. Таким образом, тригонометрические функции на прямой периодически повторяют свое значение. Если знаменит период функции , дозволено возвести функцию на этом периоде и повторить ее на других.

Инструкция

1. Период – это число T, такое что f(x) = f(x+T). Дабы обнаружить период, решают соответствующее уравнение, подставляя в качестве довода x и x+T. При этом пользуются теснее знаменитыми периодами для функций. Для функций синуса и косинуса период составляет 2π, а для тангенса и котангенса – π.

2. Пускай дана функция f(x) = sin^2(10x). Разглядите выражение sin^2(10x) = sin^2(10(x+T)). Воспользуйтесь формулой для понижения степени: sin^2(x) = (1 – cos 2x)/2. Тогда получите 1 – cos 20x = 1 – cos 20(x+T) либо cos 20x = cos (20x+20T). Зная, что период косинуса равен 2π, 20T = 2π. Значит, T = π/10. Т – минимальный правильный период, а функция будет повторяться и через 2Т, и через 3Т, и в иную сторону по оси: -T, -2T и т.д.

Полезный совет
Пользуйтесь формулами для понижения степени функции. Если вам теснее знамениты периоды каких-нибудь функций, пробуйте свести имеющуюся функцию к вестимым.

Изыскание функции на четность и нечетность помогает строить график функции и постигать нрав ее поведения. Для этого изыскания нужно сравнить данную функцию, записанную для довода “х” и для довода “-х”.

Инструкция

1. Запишите функцию, изыскание над которой нужно провести, в виде y=y(x).

2. Замените довод функции на “-х”. Подставьте данный довод в функциональное выражение.

3. Упростите выражение.

4. Таким образом, вы получили одну и ту же функцию, записанную для доводов “х” и “-х”. Посмотрите на две эти записи.Если y(-x)=y(x), то это четная функция.Если y(-x)=-y(x), то это нечетная функция.Если же про функцию невозможно сказать, что y(-x)=y(x) либо y(-x)=-y(x), то по свойству четности это функция всеобщего вида. То есть, она не является ни четной, ни нечетной.

5. Запишите сделанные вами итоги. Сейчас вы можете их применять в построении графика функции либо же в будущем аналитическом изыскании свойств функции.

6. Говорить о четности и нечетности функции дозволено также и в том случае, когда теснее задан график функции. Скажем, график послужил итогом физического эксперимента.Если график функции симметричен касательно оси ординат, то y(x) – четная функция.Если график функции симметричен касательно оси абсцисс, то x(y) – четная функция. x(y) – функция, обратная функции y(x).Если график функции симметричен касательно начала координат (0,0), то y(x) – нечетная функция. Нечетной будет также обратная функция x(y).

7. Значимо помнить, что представление о четности и нечетности функции имеет прямую связь с областью определения функции. Если, скажем, четная либо нечетная функция не существует при х=5, то она не существует и при х=-5, чего невозможно сказать про функцию всеобщего вида. При установлении четности и нечетности обращайте внимание на область определения функции.

8. Изыскание функции на четность и нечетность коррелирует с нахождением множества значений функции. Для нахождения множества значений четной функции довольно разглядеть половину функции, правее либо левее нуля. Если при x>0 четная функция y(x) принимает значения от А до В, то те же значения она будет принимать и при x<0.Для нахождения множества значений, принимаемых нечетной функцией, тоже довольно разглядеть только одну часть функции. Если при x>0 нечетная функция y(x) принимает диапазон значений от А до В, то при x<0 она будет принимать симметричный диапазон значений от (-В) до (-А).

«Тригонометрическими» когда-то стали называть функции, которые определяются зависимостью острых углов в прямоугольном треугольнике от длин его сторон. К таким функциям относят в первую очередь синус и косинус, во вторую – обратные этим функциям секанс и косеканс, производные от них тангенс и котангенс, а также обратные функции арксинус, арккосинус и др. Положительнее говорить не о «решении» таких функций, а об их «вычислении», то есть о нахождении численного значения.

Инструкция

1. Если довод тригонометрической функции неведом, то вычислить ее значение дозволено косвенным методом исходя из определений этих функций. Для этого требуется знать длины сторон треугольника, тригонометрическую функцию для одного из углов которого требуется вычислить. Скажем, по определению синус острого угла в прямоугольном треугольнике – это отношение длины противолежащего этому углу катета к длине гипотенузы. Из этого вытекает, что для нахождения синуса угла довольно знать длины этих 2-х сторон. Схожее определение гласит, что синусом острого угла является отношение длины прилежащего к этому углу катета к длине гипотенузы. Тангенс острого угла дозволено вычислить, поделив длину противолежащего ему катета на длину прилежащего, а котангенс требует деления длины прилежащего катета к длине противолежащего. Для вычисления секанса острого угла нужно обнаружить отношение длины гипотенузы к длине прилежащего к необходимому углу катета, а косеканс определяется отношением длины гипотенузы к длине противолежащего катета.

2. Если же довод тригонометрической функции вестим, то знать длины сторон треугольника не требуется – дозволено воспользоваться таблицами значений либо калькуляторами тригонометрических функций. Такой калькулятор есть среди стандартных программ операционной системы Windows. Для его запуска дозволено нажать сочетание клавиш Win + R, ввести команду calc и щелкнуть кнопку «OK». В интерфейсе программы следует раскрыть раздел «Вид» и предпочесть пункт «Инженерный» либо «Ученый». Позже этого дозволено вводить довод тригонометрической функции. Для вычисления функций синус, косинус и тангенс довольно позже ввода значения щелкнуть по соответствующей кнопке интерфейса (sin, cos, tg), а для нахождения обратных им арксинуса, арккосинуса и арктангенса следует заблаговременно поставить отметку в чекбоксе Inv.

3. Есть и альтернативные методы. Один из них – перейти на сайт поисковой системы Nigma либо Google и ввести в качестве поискового запроса надобную функцию и ее довод (скажем, sin 0.47). Эти поисковики имеют встроенные калькуляторы, следственно позже отправки такого запроса вы получите значение введенной вами тригонометрической функции.

Видео по теме

Совет 7: Как обнаружить значение тригонометрических функции

Тригонометрические функции сначала появились как инструменты абстрактных математических вычислений зависимостей величин острых углов в прямоугольном треугольнике от длин его сторон. Теперь они дюже обширно используются как в научных, так и в технических областях человеческой деятельности. Для утилитарных вычислений тригонометрических функций от заданных доводов дозволено применять различные инструменты – ниже описано несколько особенно доступных из них.

Инструкция

1. Воспользуйтесь, скажем, устанавливаемой по умолчанию совместно с операционной системой программой-калькулятором. Она открывается выбором пункта «Калькулятор» в папке «Служебные» из подраздела «Типовые», размещенного в раздел «Все программы». Данный раздел дозволено обнаружить, открыв щелчком по кнопке «Пуск» основное меню операционной системы. Если вы используете версию Windows 7, то имеете вероятность примитивно ввести слово «Калькулятор» в поле «Обнаружить программы и файлы» основного меню, а после этого щелкнуть по соответствующей ссылке в итогах поиска.

2. Введите значение угла, для которого нужно рассчитать тригонометрическую функцию, а потом кликните по соответствующей этой функции кнопке – sin, cos либо tan. Если вас волнуют обратные тригонометрические функции (арксинус, арккосинус либо арктангенс), то вначале кликните кнопку с надписью Inv – она меняет присвоенные руководящим кнопкам калькулятора функции на противоположные.

3. В больше ранних версиях ОС (скажем, Windows XP) для доступа к тригонометрическим функциям нужно раскрыть в меню калькулятора раздел «Вид» и предпочесть строку «Инженерный». Помимо того, взамен кнопки Inv в интерфейсе ветхих версий программы присутствует чекбокс с такой же надписью.

4. Дозволено обойтись и без калькулятора, если у вас есть доступ в интернет. В сети много сервисов, которые предлагают по-различному организованные вычислители тригонометрических функций. Один их особенно комфортных вариантов встроен в поисковую систему Nigma. Перейдя на ее основную страницу, примитивно введите в поле поискового запроса волнующее вас значение – скажем, «арктангенс 30 градусов». Позже нажатия кнопки «Обнаружить!» поисковик рассчитает и покажет итог вычисления – 0,482347907101025.

Видео по теме

Тригонометрия – раздел математики для постижения функций, выражающих разные зависимости сторон прямоугольного треугольника от величин острых углов при гипотенузе. Такие функции получили называние тригонометрических, а для облегчения работы с ними были выведены тригонометрические тождества .


Представление тождества в математике обозначает равенство, которое выполняется при всяких значениях доводов входящих в него функций. Тригонометрические тождества – это равенства тригонометрических функций, подтвержденные и принятые для упрощения работы с тригонометрическими формулами.Тригонометрическая функция – это элементарная функция зависимости одного из катетов прямоугольного треугольника от величины острого угла при гипотенузе. Почаще каждого применяются шесть основных тригонометрических функций: sin (синус), cos (косинус), tg (тангенс), ctg (котангенс), sec (секанс) и cosec (косеканс). Эти функции именуются прямыми, существуют также обратные функции, скажем, синус – арксинус, косинус – арккосинус и т.д.Первоначально тригонометрические функции обнаружили отражение в геометрии, после этого распространились в другие области науки: физику, химию, географию, оптику, теорию вероятностей, а также акустику, теорию музыки, фонетику, компьютерную графику и многие другие. Сейчас теснее сложно представить себе математические расчеты без этих функций, правда в дальнем прошлом они использовались только в астрономии и архитектуре.Тригонометрические тождества используются для упрощения работы с длинными тригонометрическими формулами и приведения их к удобоваримому виду. Основных тригонометрических тождеств шесть, они связаны с прямыми тригонометрическими функциями: tg ? = sin ?/cos ?; sin^2? + cos^2? = 1; 1 + tg^2? = 1/cos^2?; 1 + 1/tg^2? = 1/sin^2?; sin (?/2 – ?) = cos ?; cos (?/2 – ?) = sin ?.Эти тождества легко подтвердить из свойств соотношения сторон и углов в прямоугольном треугольнике:sin ? = BC/AC = b/c; cos ? = AB/AC = a/c; tg ? = b/a.Первое тождество tg ? = sin ?/cos ? следует из соотношения сторон в треугольнике и исключением стороны c (гипотенузы) при делении sin на cos. Таким же образом определяется тождество ctg ? = cos ?/sin ?, от того что ctg ? = 1/tg ?.По теореме Пифагора a^2 + b^2 = c^2. Поделим это равенство на c^2, получим второе тождество:a^2/c^2 + b^2/c^2 = 1 => sin^2 ? + cos^2 ? = 1.Третье и четвертое тождества получает путем деления, соответственно, на b^2 и a^2:a^2/b^2 + 1 = c^2/b^2 => tg^2 ? + 1 = 1/cos^2 ?;1 + b^2/a^2 = c^2/a^2 => 1 + 1/tg^2 ? = 1/sin^ ? либо 1 + ctg^2 ? = 1/sin^2 ?.Пятое и шестое основные тождества доказываются через определение суммы острых углов прямоугольного треугольника, которая равна 90° либо?/2.Больше трудные тригонометрические тождества : формулы сложения доводов, двойного и тройного угла, понижения степени, реформирования суммы либо произведения функций, а также формулы тригонометрической подстановки, а именно выражения основных тригонометрических функций через tg половинного угла:sin ?= (2*tg ?/2)/(1 + tg^2 ?/2);cos ? = (1 – tg^2 ?/2)/(1 = tg^2 ?/2);tg ? = (2*tg ?/2)/(1 – tg^2 ?/2).

Надобность обнаружить минимальное значение математической функции представляет собой фактический интерес в решении прикладных задач, скажем, в экономике. Огромное значение для предпринимательской деятельности имеет минимизация убытков.

Инструкция

1. Дабы обнаружить минимальное значение функции , необходимо определить, при каком значении довода x0 будет выполняться неравенство y(x0) ? y(x), где x ? x0. Как водится, эта задача решается на определенном промежутке либо во каждой области значений функции , если таковой не задан. Одним из аспектов решения является нахождение неподвижных точек.

2. Стационарной точкой именуется значение довода, при котором производная функции обращается в нуль. Согласно теореме Ферма, если дифференцируемая функция принимает экстремальное значение в некоторой точке (в данном случае – локальный минимум), то эта точка является стационарной.

3. Минимальное значение функция зачастую принимает именно в этой точке, впрочем ее дозволено определить не неизменно. Больше того, не неизменно дозволено с точностью сказать, чему равен минимум функции либо он принимает беспредельно малое значение . Тогда, как водится, находят предел, к которому она тяготится при убывании.

4. Для того дабы определить минимальное значение функции , надобно исполнить последовательность действий, состоящую из четырех этапов: нахождение области определения функции , приобретение неподвижных точек, обзор значений функции в этих точках и на концах промежутка, обнаружение минимума.

5. Выходит, пускай задана некоторая функция y(x) на промежутке с границами в точках А и В. Обнаружьте область ее определения и узнаете, является ли промежуток ее подмножеством.

6. Вычислите производную функции . Приравняйте полученное выражение нулю и обнаружьте корни уравнения. Проверьте, попадают ли эти стационарные точки в промежуток. Если нет, то на дальнейшем этапе они не учитываются.

7. Разглядите промежуток на предмет типа границ: открытые, закрытые, составные либо безмерные. От этого зависит, как вы будете искать минимальное значение . Скажем, отрезок [А, В] является закрытым промежутком. Подставьте их в функцию и рассчитайте значения. То же самое проделайте со стационарной точкой. Выберите наименьший итог.

8. С открытыми и безмерными промежутками дело обстоит несколько труднее. Тут придется искать односторонние пределы, которые не неизменно дают однозначный итог. Скажем, для промежутка с одной закрытой и одной выколотой рубежом [А, В) следует обнаружить функцию при х = А и односторонний предел lim y при х? В-0.

Если построить единичную окружность с центром в начале координат, и задать произвольное значение аргумента x 0 и отсчитать от оси Ox угол x 0, то этому углу на единичной окружности соответствует некоторая точка A (рис. 1) а ее проекцией на ось Ох будет точка М . Длина отрезка ОМ равна абсолютной величине абсциссы точки A . Данному значению аргумента x 0 сопоставлено значение функции y = cos x 0 как абсциссы точки А . Соответственно точка В (x 0 ; у 0) принадлежит графику функции у = cos х (рис. 2). Если точка А находится правее оси Оу , токосинус будет положителен, если же левее – отрицателен. Но в любом случае точка А не может покинуть окружность. Поэтому косинус лежит в пределах от –1 до 1:

–1 = cos x = 1.

Дополнительный поворот на любой угол, кратный 2p , возвращает точку A на то же место. Поэтому функция у = cos x p :

cos (x + 2p ) = cos x.

Если взять два значения аргумента, равные по абсолютной величине, но противоположные по знаку, x и –x , найти на окружности соответствующие точки A x и А -x . Как видно на рис. 3 их проекцией на ось Ох является одна и та же точка М . Поэтому

cos (–x ) = cos (x ),

т.е. косинус – четная функция, f (–x ) = f (x ).

Значит, можно исследовать свойства функции y = cos х на отрезке , а затем учесть ее четность и периодичность.

При х = 0 точка А лежит на оси Ох , ее абсцисса равна 1, а потому cos 0 = 1. С увеличением х точка А передвигается по окружности вверх и влево, ее проекция, естественно, только влево, и при х = p /2 косинус становится равен 0. Точка A в этот момент поднимается на максимальную высоту, а затем продолжает двигаться влево, но уже снижаясь. Ее абсцисса все убывает, пока не достигнет наименьшего значения, равного –1 при х = p . Таким образом, на отрезке функция у = cos х монотонно убывает от 1 до –1 (рис. 4, 5).

Из четности косинуса следует, что на отрезке [–p , 0] функция монотонно возрастает от –1 до 1, принимая нулевое значение при х = p /2. Если взять несколько периодов, получится волнообразная кривая (рис. 6).

Итак, функция y = cos x принимает нулевые значения в точках х = p /2 + kp , где k – любое целое число. Максимумы, равные 1, достигаются в точках х = 2kp , т.е. с шагом 2p , а минимумы, равные –1, в точках х = p + 2kp .

Функция y = sin х.

На единичной окружности углу x 0 соответствует точка А (рис. 7), а ее проекцией на ось Оу будет точка N . З начение функции у 0 = sin x 0 определяется как ордината точки А . Точка В (угол x 0 , у 0) принадлежит графику функции y = sin x (рис. 8). Ясно, что функция y = sin x периодическая, ее период равен 2p :

sin (x + 2p ) = sin (x ).

Для двух значений аргумента, х и – , проекции соответствующих им точек А x и А -x на ось Оу расположены симметрично относительно точки О . Поэтому

sin (–x ) = –sin (x ),

т.е. синус – функция нечетная, f(–x ) = –f(x ) (рис. 9).

Если точку A повернуть относительно точки О на угол p /2 против часовой стрелки (другими словами, если угол х увеличить на p /2), то ее ордината в новом положении будет равна абсциссе в старом. А значит,

sin (x + p /2) = cos x.

Иначе, синус – это косинус, «запоздавший» на p /2, поскольку любое значение косинуса «повторится» в синусе, когда аргумент возрастет на p /2. И чтобы построить график синуса, достаточно сдвинуть график косинуса на p /2 вправо (рис. 10). Чрезвычайно важное свойство синуса выражается равенством

Геометрический смысл равенства виден из рис. 11. Здесь х – это половина дуги АВ , а sin х – половина соответствующей хорды. Очевидно, что по мере сближения точек А и В длина хорды все точнее приближается к длине дуги. Из того же рисунка несложно извлечь неравенство

|sin x | x|, верное при любом х .

Формулу (*) математики называют замечательным пределом. Из нее, в частности, следует, что sin х » х при малых х .

Функции у = tg х, у = ctg х . Две другие тригонометрические функции – тангенс и котангенс проще всего определить как отношения уже известных нам синуса и косинуса:

Как синус и косинус, тангенс и котангенс – функции периодические, но их периоды равны p , т.е. они вдвое меньше, чем у синуса и косинуса. Причина этого понятна: если синус и косинус оба поменяют знаки, то их отношение не изменится.

Поскольку в знаменателе тангенса находится косинус, то тангенс не определен в тех точках, где косинус равен 0, – когда х = p /2 + kp . Во всех остальных точках он монотонно возрастает. Прямые х = p /2 + kp для тангенса являются вертикальными асимптотами. В точках kp тангенс и угловой коэффициент составляют 0 и 1 соответственно (рис. 12).

Котангенс не определен там, где синус равен 0 (когда х = kp ). В остальных точках он монотонно убывает, а прямые х = kp его вертикальные асимптоты. В точках х = p /2 + kp котангенс обращается в 0, а угловой коэффициент в этих точках равен –1 (рис. 13).

Четность и периодичность.

Функция называется четной, если f (–x ) = f (x ). Функции косинус и секанс – четные, а синус, тангенс, котангенс и косеканс – функции нечетные:

sin (–α) = – sin α tg (–α) = – tg α
cos (–α) = cos α ctg (–α) = – ctg α
sec (–α) = sec α cosec (–α) = – cosec α

Свойства четности вытекают из симметричности точек P a и Р - a (рис. 14) относительно оси х . При такой симметрии ордината точки меняет знак ((х ; у ) переходит в (х ; –у)). Все функции – периодические, синус, косинус, секанс и косеканс имеют период 2p , а тангенс и котангенс – p :

sin (α + 2) = sin α cos (α + 2) = cos α
tg (α + ) = tg α ctg (α + ) = ctg α
sec (α + 2) = sec α cosec (α + 2) = cosec α

Периодичность синуса и косинуса следует из того, что все точки P a + 2 kp , где k = 0, ±1, ±2,…, совпадают, а периодичность тангенса и котангенса – из того, что точки P a + kp поочередно попадают в две диаметрально противоположные точки окружности, дающие одну и ту же точку на оси тангенсов.

Основные свойства тригонометрических функций могут быть сведены в таблицу:

Функция Область определения Множество значений Четность Участки монотонности (k = 0, ± 1, ± 2,…)
sin x –Ґ x Ґ [–1, +1] нечетная возрастает при x О ((4k – 1) p /2, (4k + 1) p /2),убывает при x О ((4k + 1) p /2, (4k + 3) p /2)
cos x –Ґ x Ґ [–1, +1] четная Возрастает приx О ((2k – 1) p , 2kp ),убывает приx О (2kp , (2k + 1) p )
tg x x p /2 + p k (–Ґ , +Ґ ) нечетная возрастает приx О ((2k – 1) p /2, (2k + 1) p /2)
ctg x x p k (–Ґ , +Ґ ) нечетная убывает приx О (kp , (k + 1) p )
sec x x p /2 + p k (–Ґ , –1] И [+1, +Ґ ) четная Возрастает приx О (2kp , (2k + 1) p ),убывает приx О ((2k – 1) p , 2kp )
cosec x x p k (–Ґ , –1] И [+1, +Ґ ) нечетная возрастает приx О ((4k + 1) p /2, (4k + 3) p /2),убывает приx О ((4k – 1) p /2, (4k + 1) p /2)

Формулы приведения.

По этим формулам значение тригонометрической функции аргумента a , где p /2 a p , можно привести к значению функции аргумента a , где 0 a p /2, как той же, так и дополнительной к ней.

Аргумент b – a + a p – a p + a + a + a 2p – a
sin b cos a cos a sin a –sin a –cos a –cos a –sin a
cos b sin a –sin a –cos a –cos a –sin a sin a cos a

Поэтому в таблицах тригонометрических функций даются значения только для острых углов, причем достаточно ограничиться, например, синусом и тангенсом. В таблице даны только наиболее употребительные формулы для синуса и косинуса. Из них легко получить формулы для тангенса и котангенса. При приведении функции от аргумента вида kp /2 ± a , где k – целое число, к функции от аргумента a :

1) название функции сохраняется, если k четное, и меняется на «дополнительное», если k нечетное;

2) знак в правой части совпадает со знаком приводимой функции в точке kp /2 ± a , если угол a острый.

Например, при приведении ctg (a – p /2) убеждаемся, что a – p /2 при 0 a p /2 лежит в четвертом квадранте, где котангенс отрицателен, и, по правилу 1, меняем название функции: ctg (a – p /2) = –tg a .

Формулы сложения.

Формулы кратных углов.

Эти формулы выводятся прямо из формул сложения:

sin 2a = 2 sin a cos a ;

cos 2a = cos 2 a – sin 2 a = 2 cos 2 a – 1 = 1 – 2 sin 2 a ;

sin 3a = 3 sin a – 4 sin 3 a ;

cos 3a = 4 cos 3 a – 3 cos a ;

Формулу для cos 3a использовал Франсуа Виет при решении кубического уравнения. Он же впервые нашел выражения для cos n a и sin n a , которые позже были получены более простым путем из формулы Муавра.

Если в формулах двойного аргумента заменить a на a /2, их можно преобразовать в формулы половинных углов:

Формулы универсальной подстановки.

Используя эти формулы, выражение, включающее разные тригонометрические функции от одного и того же аргумента, можно переписать как рациональное выражение от одной функции tg (a /2), это бывает полезно при решении некоторых уравнений:

Формулы преобразования сумм в произведения и произведений в суммы.

До появления компьютеров эти формулы использовались для упрощения вычислений. Расчеты производились с помощью логарифмических таблиц, а позже – логарифмической линейки, т.к. логарифмы лучше всего приспособлены для умножения чисел, поэтому все исходные выражения приводили к виду, удобному для логарифмирования, т.е. к произведениям, например:

2 sin a sin b = cos (a – b ) – cos (a + b );

2 cos a cos b = cos (a – b ) + cos (a + b );

2 sin a cos b = sin (a – b ) + sin (a + b ).

Формулы для функций тангенса и котангенса можно получить из вышеприведенных.

Формулы понижения степени.

Из формул кратного аргумента выводятся формулы:

sin 2 a = (1 – cos 2a )/2; cos 2 a = (1 + cos 2a )/2;
sin 3 a = (3 sin a – sin 3a )/4; cos 3 a = (3 cosa + cos 3 a )/4.

С помощью этих формул тригонометрические уравнения можно приводить к уравнениям более низких степеней. Таким же образом можно вывести и формулы понижения для более высоких степеней синуса и косинуса.

Производные и интегралы тригонометрических функций
(sin x )` = cos x ; (cos x )` = –sin x ;
(tg x )` = ; (ctg x )` = – ;
т sin x dx = –cos x + C ; т cos x dx = sin x + C ;
т tg x dx = –ln |cos x | + C ; т ctg x dx = ln |sin x | + C ;

Каждая тригонометрическая функция в каждой точке своей области определения непрерывна и бесконечно дифференцируема. Причем и производные тригонометрических функций являются тригонометрическими функциями, а при интегрировании получаются так же тригонометрические функции или их логарифмы. Интегралы от рациональных комбинаций тригонометрических функций всегда являются элементарными функциями.

Представление тригонометрических функций в виде степенных рядов и бесконечных произведений.

Все тригонометрические функции допускают разложение в степенные ряды. При этом функции sin x b cos x представляются рядами. сходящимися для всех значений x :

Эти ряды можно использовать для получения приближенных выражений sin x и cos x при малых значениях x :

при |x| p /2;

при 0 x| p

(B n – числа Бернулли).

Функции sin x и cos x могут быть представлены в виде бесконечных произведений:

Тригонометрическая система 1, cos x , sin x , cos 2x , sin 2x , ¼, cos nx , sin nx , ¼, образует на отрезке [–p , p ] ортогональную систему функций, что дает возможность представления функций в виде тригонометрических рядов.

определяются как аналитические продолжения соответствующих тригонометрических функций действительного аргумента в комплексную плоскость. Так, sin z и cos z могут быть определены с помощью рядов для sin x и cos x , если вместо x поставить z :

Эти ряды сходятся по всей плоскости, поэтому sin z и cos z – целые функции.

Тангенс и котангенс определяются формулами:

Функции tg z и ctg z – мероморфные функции. Полюсы tg z и sec z – простые (1-го порядка) и находятся в точках z = p /2 + p n, полюсы ctg z и cosec z – также простые и находятся в точках z = p n , n = 0, ±1, ±2,…

Все формулы, справедливые для тригонометрических функций действительного аргумента, справедливы и для комплексного. В частности,

sin (–z ) = –sin z ,

cos (–z ) = cos z ,

tg (–z ) = –tg z ,

ctg (–z ) = –ctg z,

т.е. четность и нечетность сохраняются. Сохраняются и формулы

sin (z + 2p ) = sin z , (z + 2p ) = cos z , (z + p ) = tg z , (z + p ) = ctg z ,

т.е. периодичность также сохраняется, причем периоды такие же, как и для функций действительного аргумента.

Тригонометрические функции могут быть выражены через показательную функцию от чисто мнимого аргумента:

Обратно, e iz выражается через cos z и sin z по формуле:

e iz = cos z + i sin z

Эти формулы носят название формул Эйлера . Леонард Эйлер вывел их в 1743.

Тригонометрические функции также можно выразить через гиперболические функции:

z = –i sh iz , cos z = ch iz, z = –i th iz.

где sh, ch и th – гиперболические синус, косинус и тангенс.

Тригонометрические функции комплексного аргумента z = x + iy , где x и y – действительные числа, можно выразить через тригонометрические и гиперболические функции действительных аргументов, например:

sin (x + iy ) = sin x ch y + i cos x sh y ;

cos (x + iy ) = cos x ch y + i sin x sh y .

Синус и косинус комплексного аргумента могут принимать действительные значения, превосходящие 1 по абсолютной величине. Например:

Если неизвестный угол входит в уравнение как аргумент тригонометрических функций, то уравнение называется тригонометрическим. Такие уравнения настолько часто встречаются, что методы их решения очень подробно и тщательно разработаны. С помощью различных приемов и формул тригонометрические уравнения сводят к уравнениям вида f (x ) = a , где f – какая-либо из простейших тригонометрических функций: синус, косинус, тангенс или котангенс. Затем выражают аргумент x этой функции через ее известное значение а.

Поскольку тригонометрические функции периодичны, одному и тому же а из области значений отвечает бесконечно много значений аргумента, и решения уравнения нельзя записать в виде одной функции от а . Поэтому в области определения каждой из основных тригонометрических функций выделяют участок, на котором она принимает все свои значения, причем каждое только один раз, и находят функцию, обратную ей на этом участке. Такие функции обозначают, приписывая приставку агс (дуга) к названию исходной функции, и называют обратными тригонометрическими функциями или просто аркфункциями.

Обратные тригонометрические функции.

Для sin х , cos х , tg х и ctg х можно определить обратные функции. Они обозначаются соответственно arcsin х (читается «арксинус x »), arcos x , arctg x и arcctg x . По определению, arcsin х есть такое число у, что

sin у = х .

Аналогично и для других обратных тригонометрических функций. Но такое определение страдает некоторой неточностью.

Если отразить sin х , cos х , tg х и ctg х относительно биссектрисы первого и третьего квадрантов координатной плоскости, то функции из-за их периодичности становятся неоднозначными: одному и тому же синусу (косинусу, тангенсу, котангенсу) соответствует бесконечное количество углов.

Чтобы избавиться от неоднозначности, из графика каждой тригонометрической функции выделяется участок кривой шириной p , при этом нужно, чтобы между аргументом и значением функции соблюдалось взаимно однозначное соответствие. Выбираются участки около начала координат. Для синуса в качестве «интервала взаимной однозначности» берется отрезок [–p /2, p /2], на котором синус монотонно возрастает от –1 до 1, для косинуса – отрезок , для тангенса и котангенса соответственно интервалы (–p /2, p /2) и (0, p ). Каждая кривая на интервале отражается относительно биссектрисы и теперь можно определить обратные тригонометрические функции. Например, пусть задано значение аргумента x 0 , такое, что 0 Ј x 0 Ј 1. Тогда значением функции y 0 = arcsin x 0 будет единственное значение у 0 , такое, что –p /2 Ј у 0 Ј p /2 и x 0 = sin y 0 .

Таким образом, арксинус – это функция агсsin а , определенная на отрезке [–1, 1] и равная при каждом а такому значению a , –p /2 a p /2, что sin a = а. Ее очень удобно представлять с помощью единичной окружности (рис. 15). При |а| 1 на окружности есть две точки с ординатой a , симметричные относительно оси у. Одной из них отвечает угол a = arcsin а , а другой – угол p - а. С учетом периодичности синуса решение уравнения sin x = а записывается следующим образом:

х = (–1) n arcsin a + 2p n ,

где n = 0, ±1, ±2,...

Так же решаются другие простейшие тригонометрические уравнения:

cos x = a , –1 = a = 1;

x = ±arcos a + 2p n ,

где п = 0, ±1, ±2,... (рис. 16);

tg х = a ;

x = arctg a + p n,

где п = 0, ±1, ±2,... (рис. 17);

ctg х = а ;

х = arcctg a + p n,

где п = 0, ±1, ±2,... (рис. 18).

Основные свойства обратных тригонометрических функций:

arcsin х (рис. 19): область определения – отрезок [–1, 1]; область значений – [–p /2, p /2], монотонно возрастающая функция;

arccos х (рис. 20): область определения – отрезок [–1, 1]; область значений – ; монотонно убывающая функция;

arctg х (рис. 21): область определения – все действительные числа; область значений – интервал (–p /2, p /2); монотонно возрастающая функция; прямые у = –p /2 и у = p /2 – горизонтальные асимптоты;


arcctg х (рис. 22): область определения – все действительные числа; область значений – интервал (0, p ); монотонно убывающая функция; прямые y = 0 и у = p – горизонтальные асимптоты.

Т.к. тригонометрические функции комплексного аргумента sin z и cos z (в отличие от функций действительного аргумента) принимают все комплексные значения, то и уравнения sin z = a и cos z = a имеют решения для любого комплексного a x и y – действительные числа, имеют место неравенства

½|e\e y e -y | ≤|sin z |≤½(e y +e -y),

½|e y e -y | ≤|cos z |≤½(e y +e -y ),

из которых при y ® Ґ вытекают асимптотические формулы (равномерно относительно x )

|sin z | » 1/2 e |y| ,

|cos z | » 1/2 e |y| .

Тригонометрические функции возникли впервые в связи с исследованиями в астрономии и геометрии. Соотношения отрезков в треугольнике и окружности, являющиеся по существу тригонометрическими функциями, встречаются уже в 3 в. до н. э. в работах математиков Древней Греции Евклида , Архимеда , Аполлония Пергского и других, однако эти соотношения не являлись самостоятельным объектом исследования, так что тригонометрические функции как таковые ими не изучались. Они рассматривались первоначально как отрезки и в такой форме применялись Аристархом (конец 4 – 2-я половина 3 вв. до н. э.), Гиппархом (2 в. до н. э.), Менелаем (1 в. н. э.) и Птолемеем (2 в. н. э.) при решении сферических треугольников. Птолемей составил первую таблицу хорд для острых углов через 30" с точностью до 10 –6 . Это была первая таблица синусов. Как отношение функция sin a встречается уже у Ариабхаты (конец 5 в.). Функции tg a и ctg a встречаются у аль-Баттани (2-я половина 9 – начало 10 вв.) и Абуль-Вефа (10 в.), который употребляет также sec a и cosec a . Ариабхата знал уже формулу (sin 2 a + cos 2 a ) = 1, а также формулы sin и cos половинного угла, с помощью которых построил таблицы синусов для углов через 3°45"; исходя из известных значений тригонометрических функций для простейших аргументов. Бхаскара (12 в.) дал способ построения таблиц через 1 с помощью формул сложения. Формулы преобразования суммы и разности тригонометрических функций различных аргументов в произведение выводились Региомонтаном (15 в.) и Дж. Непером в связи с изобретением последним логарифмов (1614). Региомонтан дал таблицу значений синуса через 1". Разложение тригонометрических функций в степенные ряды получено И.Ньютоном (1669). В современную форму теорию тригонометрических функций привел Л.Эйлер (18 в.). Ему принадлежат их определение для действительного и комплексного аргументов, принятая ныне символика, установление связи с показательной функцией и ортогональности системы синусов и косинусов.



|BD| - длина дуги окружности с центром в точке A .
α - угол, выраженный в радианах.

Тангенс (tg α ) - это тригонометрическая функция, зависящая от угла α между гипотенузой и катетом прямоугольного треугольника, равная отношению длины противолежащего катета |BC| к длине прилежащего катета |AB| .
Котангенс (ctg α ) - это тригонометрическая функция, зависящая от угла α между гипотенузой и катетом прямоугольного треугольника, равная отношению длины прилежащего катета |AB| к длине противолежащего катета |BC| .

Тангенс

Где n - целое.

В западной литературе тангенс обозначается так:
.
;
;
.

График функции тангенс, y = tg x


Котангенс

Где n - целое.

В западной литературе котангенс обозначается так:
.
Также приняты следующие обозначения:
;
;
.

График функции котангенс, y = ctg x


Свойства тангенса и котангенса

Периодичность

Функции y = tg x и y = ctg x периодичны с периодом π .

Четность

Функции тангенс и котангенс - нечетные.

Области определения и значений, возрастание, убывание

Функции тангенс и котангенс непрерывны на своей области определения (см. доказательство непрерывности). Основные свойства тангенса и котангенса представлены в таблице (n - целое).

y = tg x y = ctg x
Область определения и непрерывность
Область значений -∞ < y < +∞ -∞ < y < +∞
Возрастание -
Убывание -
Экстремумы - -
Нули, y = 0
Точки пересечения с осью ординат, x = 0 y = 0 -

Формулы

Выражения через синус и косинус

; ;
; ;
;

Формулы тангенса и котангенс от суммы и разности



Остальные формулы легко получить, например

Произведение тангенсов

Формула суммы и разности тангенсов

В данной таблице представлены значения тангенсов и котангенсов при некоторых значениях аргумента.

Выражения через комплексные числа

Выражения через гиперболические функции

;
;

Производные

; .


.
Производная n-го порядка по переменной x от функции :
.
Вывод формул для тангенса > > > ; для котангенса > > >

Интегралы

Разложения в ряды

Чтобы получить разложение тангенса по степеням x , нужно взять несколько членов разложения в степенной ряд для функций sin x и cos x и разделить эти многочлены друг на друга , . При этом получаются следующие формулы.

При .

при .
где B n - числа Бернулли. Они определяются либо из рекуррентного соотношения:
;
;
где .
Либо по формуле Лапласа:


Обратные функции

Обратными функциями к тангенсу и котангенсу являются арктангенс и арккотангенс , соответственно.

Арктангенс, arctg


, где n - целое.

Арккотангенс, arcctg


, где n - целое.

Использованная литература:
И.Н. Бронштейн, К.А. Семендяев, Справочник по математике для инженеров и учащихся втузов, «Лань», 2009.
Г. Корн, Справочник по математике для научных работников и инженеров, 2012.

См. также:

Основные понятия

Вспомним для начала определения четной, нечетной и периодической функции.

Определение 2

Четная функция -- функция, которая не меняет свое значение при изменении знака независимой переменной:

Определение 3

Функция, которая повторяет свои значения через некоторый регулярный интервал времени:

T -- период функции.

Четность и нечетность тригонометрических функций

Рассмотрим следующий рисунок (рис. 1):

Рисунок 1.

Здесь $\overrightarrow{OA_1}=(x_1,y_1)$ и $\overrightarrow{OA_2}=(x_2,y_2)$ -- симметричные относительно оси $Ox$ векторы единичной длины.

Очевидно, что координаты этих векторов связаны следующими соотношениями:

Так как тригонометрические функции синуса и косинуса можно определять с помощью единичной тригонометрической окружности, то получаем, что функция синуса будет нечетной, а функция косинуса -- четной функцией, то есть:

Периодичность тригонометрических функций

Рассмотрим следующий рисунок (рис. 2).

Рисунок 2.

Здесь $\overrightarrow{OA}=(x,y)$ -- вектор единичной длины.

Сделаем полный оборот вектором $\overrightarrow{OA}$. То есть повернем данный вектор на $2\pi $ радиан. После этого вектор полностью вернется в начальное положение.

Так как тригонометрические функции синуса и косинуса можно определять с помощью единичной тригонометрической окружности, то получаем, что

То есть функции синуса и косинуса являются периодическими функциями с наименьшим периодом $T=2\pi $.

Рассмотрим теперь функции тангенса и котангенса. Так как $tgx=\frac{sinx}{cosx}$, то

Так как $сtgx=\frac{cosx}{sinx}$, то

Примеры задач на использование четности, нечетности и периодичности тригонометрических функций

Пример 1

Доказать следующие утверждения:

а) $tg{385}^0=tg{25}^0$

в) $sin{(-721}^0)=-sin1^0$

а) $tg{385}^0=tg{25}^0$

Так как тангенс -- периодическая функция с минимальным периодом ${360}^0$, то получим

б) ${cos \left(-13\pi \right)\ }=-1$

Так как косинус -- четная и периодическая функция с минимальным периодом $2\pi $, то получим

\[{cos \left(-13\pi \right)\ }={cos 13\pi \ }={cos \left(\pi +6\cdot 2\pi \right)=cos\pi \ }=-1\]

в) $sin{(-721}^0)=-sin1^0$

Так как синус -- нечетная и периодическая функция с минимальным периодом ${360}^0$, то получим

Основные понятия

Вспомним для начала определения четной, нечетной и периодической функции.

Определение 2

Четная функция -- функция, которая не меняет свое значение при изменении знака независимой переменной:

Определение 3

Функция, которая повторяет свои значения через некоторый регулярный интервал времени:

T -- период функции.

Четность и нечетность тригонометрических функций

Рассмотрим следующий рисунок (рис. 1):

Рисунок 1.

Здесь $\overrightarrow{OA_1}=(x_1,y_1)$ и $\overrightarrow{OA_2}=(x_2,y_2)$ -- симметричные относительно оси $Ox$ векторы единичной длины.

Очевидно, что координаты этих векторов связаны следующими соотношениями:

Так как тригонометрические функции синуса и косинуса можно определять с помощью единичной тригонометрической окружности, то получаем, что функция синуса будет нечетной, а функция косинуса -- четной функцией, то есть:

Периодичность тригонометрических функций

Рассмотрим следующий рисунок (рис. 2).

Рисунок 2.

Здесь $\overrightarrow{OA}=(x,y)$ -- вектор единичной длины.

Сделаем полный оборот вектором $\overrightarrow{OA}$. То есть повернем данный вектор на $2\pi $ радиан. После этого вектор полностью вернется в начальное положение.

Так как тригонометрические функции синуса и косинуса можно определять с помощью единичной тригонометрической окружности, то получаем, что

То есть функции синуса и косинуса являются периодическими функциями с наименьшим периодом $T=2\pi $.

Рассмотрим теперь функции тангенса и котангенса. Так как $tgx=\frac{sinx}{cosx}$, то

Так как $сtgx=\frac{cosx}{sinx}$, то

Примеры задач на использование четности, нечетности и периодичности тригонометрических функций

Пример 1

Доказать следующие утверждения:

а) $tg{385}^0=tg{25}^0$

в) $sin{(-721}^0)=-sin1^0$

а) $tg{385}^0=tg{25}^0$

Так как тангенс -- периодическая функция с минимальным периодом ${360}^0$, то получим

б) ${cos \left(-13\pi \right)\ }=-1$

Так как косинус -- четная и периодическая функция с минимальным периодом $2\pi $, то получим

\[{cos \left(-13\pi \right)\ }={cos 13\pi \ }={cos \left(\pi +6\cdot 2\pi \right)=cos\pi \ }=-1\]

в) $sin{(-721}^0)=-sin1^0$

Так как синус -- нечетная и периодическая функция с минимальным периодом ${360}^0$, то получим

Похожие публикации