Новая школа - Образовательный портал

Исследовательская работа "вирусология в будущем". Вирусы (биология): классификация, изучение. Вирусология - наука о вирусах

Для предупреждения вирусной инфекции - оспы была предложена английским врачом Э . Дженнером в 1796 г., почти за сто лет до открытия вирусов, вторая вакцина - антирабическая , была предложена основателем микробиологии Л. Пастером в 1885 г. - за семь лет до открытия вирусов.

Честь открытия вирусов принадлежит нашему сооте­чественнику Д.И. Ивановскому , который впервые в 1892 г. доказал существование нового типа возбудителя болезней на примере мозаичной болезни табака.

Будучи студентом Петербургского университета, он выезжал на Украину и в Бессарабию для изучения причин болезни табака, а затем, после окончания университета, продолжал исследования в Никитском ботаническом саду под Ялтой. В содержимом пораженного листа он не обнаружил бактерий, однако сок больного растения вызывал поражения здоровых листьев. Ивановский профильтровал сок больного растения через свечу Шамберлана, поры которой задерживали мельчайшие бактерии. В результате он обнаружил, что воз­будитель проходит даже через такие поры, так как фильт­рат продолжал вызывать заболевание листьев табака. Культивирование его на искусственных питательных сре­дах оказалось невозможным. Д.И. Ивановский приходит к выводу, что возбудитель имеет необычную природу: он фильтруется через бактериальные фильтры и не способен расти на искусственных питательных средах. Он назвал новый тип возбудителя «фильтрующиеся бактерии».

Ивановский установил, что болезнь табака, распространенная в Крыму, вызывается вирусом, который обладает высокой заразительностью и строго выраженной специфичностью действия. Это открытие показало, что наряду с клеточными формами существуют живые системы, невидимые в обычные световые микроскопы, проходящие через мелкопористые фильтры и лишенные клеточной структуры.

Спустя 6 лет в 1898 г. после открытия Д.И. Ивановского гол­ландский ученый М. Бейеринк подтвердил данные, полученные русским ученым, придя, однако, к вы­воду, что возбудитель табачной мозаики - жидкий живой контагий. Ивановский с этим выводом не согла­сился. Благо­даря его замечательным исследованиям ого Ф. Леффлер и П. Фрош в 1897 г. установили вирусную этиоло­гию ящура, показали, что возбудитель ящура также проходит через бактериальные фильтры. Ивановский, анализируя эти данные, пришел к выводу, что агенты ящура и табачной мозаики принци­пиально сходны. В споре с М. В. Бейеринком прав ока­зался Ивановский.

Опыты Д.И. Иванов­ского были положены в ос­нову его диссертации «О двух болезнях табака», представленной в 1888 г., и изложены в книге того же названия, вышедшей в 1892 г. Этот год и считает­ся годом открытия вирусов.

В дальнейшем были открыты и изучены возбуди­тели многих вирусных заболеваний человека, животных и растений.

Ивановский от­крыл вирус растений. Леффлер и Фрош открыли вирус, поражаю­щий животных. Наконец, в 1917 г. Д’Эррель открыл бактериофаг - вирус, по­ражающий бактерии. Та­ким образом, вирусы вызывают болезни растений, живот­ных, бактерий.

Слово «вирус» означает яд, оно применялось еще Луи Пастером для обозначения заразного начала. Позже стали применять название «ультравирус» или «фильтрую­щий вирус», затем определение отбросили, и укоренился термин «вирус».

В 1892 г. современник Пастера и ближайший сотрудник И.И. Мечникова Н.Ф. Гамалея (1859-1949 гг.) обнаружил явле­ние спонтанного растворения микробов, которое, как было установлено Д’Эреллем, обусловлено действием вируса бак­терий - фага.

Под руководством И.И. Мечникова Н.Ф. Гамалея участво­вал в создании первой бактериологической станции в России и второй в мире пастеровской станции. Его исследования посвя­щены изучению инфекции и иммунитета, изменчивости бакте­рий, профилактике сыпного тифа, оспы, и других болезней.

В 1935 году У.Стенли из сока табака, пораженного мозаичной болезнью, выделил в кристаллическом виде вирус табачной мозаики (ВТМ). За это в 1946 году ему была вручена Нобелевская премия.

В 1958 году Р.Франклин и К.Холм , исследуя строение ВТМ, открыли, что ВТМ является полым цилиндрическим образованием.

В 1960 году Гордон и Смит установили, что некоторые растения заражаются свободной нуклеиновой кислотой ВТМ, а не целой частицей нуклеотида. В этом же году крупный советский ученый Л.А.Зильбер сформулировал основные положения вирусогенетической теории.

В 1962 году американские ученые А.Зигель, М.Цейтлин и О.И.Зегал экспериментально получили вариант ВТМ, не обладающий белковой оболочкой, выяснили, что у дефектных ВТМ частиц белки располагаются беспорядочно, и нуклеиновая кислота ведет себя, как полноценный вирус.

В 1968 году Р.Шепард обнаружил ДНК-содержащий вирус.

Одним из крупнейших открытий в вирусологии является открытие большинства структур различных вирусов, их генов и кодирующих ферментов — обратная транскриптаза. Назначение этого фермента — катализировать синтез молекул ДНК на матрице молекулы .

В развитии вирусологии большая роль принадлежит отечественным ученым: И.И. Мечникову (1845-1916гг.), Н.Ф. Гамалея (1859-1949гг.), Л.А. Зильбер (1894-1966г.), В.М. Жданову (1914-1987гг.), З.В. Ермольевой (1898-1979гг.), А.А. Смородинцеву (1901-1989гг.), М.П. Чумакову (1909-1990гг.) и др.

В вирусологии рассматриваются несколько периодов развития.

ПЕРИОДЫ РАЗВИТИЯ ВИРУСОЛОГИИ

Быстрый прогресс в области вирусологических знаний, основанный в значительной мере на достижениях смеж­ных естественных наук, обусловил возможность углублен­ного познания природы вирусов. Как ни в одной другой науке, в вирусологии прослеживается быстрая и четкая смена уровней познания - от уровня организма до суб­молекулярного.

Приведенные периоды развития вирусологии отражают те уровни, которые являлись доминирующими в течение одного - двух десятилетий.

Уровень организма (30-40 гг. XX века).

Основ­ной экспериментальной моделью являются лабораторные животные (белые мыши, крысы, кролики, хомяки, обезьяны и т. д.), основным первым модельным вирусом был .

В 40-е годы в вирусологию в качестве эксперименталь­ной модели прочно входят куриные эмбрионы. Они обладали высокой чувствительностью к вирусам гриппа, и некоторым другим. Использование этой модели стало возможным благодаря исследованиям австралийского ви­русолога и иммунолога Ф. Бернета , автора первого пособия по вирусологии «Вирус как организм». В 1960 г. Ф. Бернет и П. Медавар удостоены Нобелевской премии в области вирусологии.

Открытие в 1941 г. американским вирусологом Херстом феномена гемагглютинации немало способствовало изучению взаимодействия вируса с клеткой на модели вируса гриппа и .

Большим вкладом отечественных вирусологов в меди­цинскую вирусологию явилось изучение природно-очаговых заболеваний - . В 1937 г. была организована первая экспедиция, возглавляемая Зильбером, в составе которой были Левкович, Шубладзе, Чумаков, Соловьев и др. Благодаря проведенным исследованиям был открыт вирус клещевого энцефалита, выявлены его переносчики - иксодовые , разработаны методы лабораторной диаг­ностики, профилактики и лечения. Советскими вирусоло­гами были изучены вирусные геморрагические , разработаны препараты для диагностических и лечебно-профилактических целей.

Уровень клетки (40-50 гг. XX века).

В 1949 г. происходит значительное событие в истории вирусологии - открытие возможности культивировать клетки в искусственных условиях. В 1952 г. Дж. Эндерс, Т. Уэллер, Ф. Роббинс получили Нобелевскую премию за разработку метода куль­туры клеток. Использование культуры клеток в вирусоло­гии явилось подлинно революционным событием, послу­жившим основой для выделения многочисленных новых вирусов, их идентификации, клонирования, изучения их взаимодействия с клеткой. Появилась возможность полу­чения культуральных вакцин. Эта возможность была до­казана на примере вакцины против . В со­дружестве с американскими вирусологами Дж. Солком и А. Сэбином , советскими вирусологами М.П. Чумаковым, А.А. Смородинцевым и др. была разработана технология производства, апробирована и внедрена в практику убитая и живая вакцины против . В 1959 г. была проведена массовая иммунизация детского населения в СССР (около 15 млн.) живой полиомиелитной вакциной, в результате резко снизилась заболеваемость полиомиелитом и практически исчезли паралитические формы заболе­вания. В 1963 г. за разработку и внедрение в практику живой полиомиелитной вакцины М.П. Чумакову и А.А. Смородинцеву была присуждена Ленинская премия. В 1988 г. приняла решение о глобальной ликвидации заболеваемости полиомиелитом. В России это заболевание не регистрируется с 2002 года.

Другим важным приложением техники выращивания виру­сов явилось получение Дж. Эндерсом и Смородинцевым живой вакцины, широкое применение кото­рой обусловило значительное снижение заболеваемости корью и является основой для искоренения этой инфек­ции.

Широко внедрялись в практику и другие культуральные вакцины - энцефалитная, ящурная, антирабическая и т. д.

Молекулярный уровень (50-60 гг. XX века).

В вирусологии широко стали использовать методы молекулярной биоло­гии, а вирусы благодаря простой организации их генома стали распространенной моделью для молекулярной био­логии. Ни одно открытие молекулярной биологии не об­ходится без вирусной модели, включая генетический код, всего механизма внутриклеточной экспрессии генома, реп­ликации ДНК, процессинга (созревания) информационных и т. д.

В свою очередь использование молекуляр­ных методов в вирусологии позволило установить прин­ципы строения (архитектуры) вирусных индивидуумов - , способы проникновения вирусов в клетку и их репродукции.

Субмолекулярный уровень (70-80 гг. XX века).

Стремительное развитие молекулярной биологии открывает возможности изучения первичной структуры нуклеиновых кислот и бел­ков. Появляются методы секвенирования ДНК, определе­ния аминокислотных последовательностей белка. Полу­чают первые генетические карты геномов ДНК-содержащих вирусов.

В 1970 г. Д. Балтимором и одновременно Г. Теминым и С. Мизутани была открыта обратная транскриптаза в составе РНК-содержащих онкогенных вирусов, фермент, переписывающий на ДНК. Становится реальным синтез гена с помощью этого фермента на матрице, вы­деленной из полисом иРНК. Появляется возможность переписать РНК в ДНК и провести ее секвенирование.

В 1972 г. возникает новый раздел молекулярной био­логии - генная инженерия. В этом году публикуется со­общение П. Берга в США о создании рекомбинантной молекулы ДНК, которое положило начало эре генной инженерии. Появляется возможность получения большого количества нуклеиновых кислот и белков путем введения рекомбинантных ДНК в состав генома прокариот и прос­тых эукариот. Одним из основных практических прило­жений нового метода является получение дешевых препа­ратов белков, имеющих значение в медицине (, интерферон) и сельском хозяйстве (дешевые белковые корма для скота).

Этот период характеризуется важными открытиями в области медицинской вирусологии. В фокусе изучения - три наиболее массовых болезни, наносящих огромный ущерб здоровью людей и народному хозяйству - , рак, гепатит.

Установлены причины регулярно повторяющихся пан­демий гриппа. Детально изучены вирусы рака животных (птиц, грызунов), установлена структура их генома и идентифицирован ген, ответственный за злокачественную трансформацию клеток - онкоген. Установлено, что причиной гепатитов А и В являются разные вирусы: вызывает РНК-содержащий вирус, отнесенный к се­мейству пикорнавирусов, а гепатит В - ДНК-содержащий вирус, отнесенный к семейству гепаднавирусов. В 1976 г. Бламберг, исследуя антигены крови у аборигенов Австралии, обнаружил так называемый австралийский ан­тиген, который он принял за один из крови. Позже было выявлено, что этот является анти­геном гепатита В, носительство которого распространено во всех странах мира. За открытие австралийского анти­гена Бламбергу в 1976 г. была присуждена Нобелевская премия.

Другая Нобелевская премия в 1976 г. присуждена аме­риканскому ученому К. Гайдушеку, который установил вирусную этиологию одной из медленных инфекций че­ловека - куру, наблюдающейся в одном из туземных пле­мен на острове Новая Гвинея и связанной с ритуальным обрядом - поеданием зараженного мозга умерших род­ственников.

Начиная со второй половины 80-х годов вирусологи активно включились в разработку неожиданно возникшей в мире проблемы ВИЧ-инфекции. Этому способствовал значительный опыт работы отечественных ученых с ретровирусами.

Медицинская микробиология, вирусология и во многом обязаны исследованиям отечественным ученым таким как Н.Ф. Гамалея (1859-1949), П.Ф. Здродовский (1890-1976), Л.А. Зильбер (1894-1966), Д.И. Ивановский (1864-1920), Л.А. Тарасевич (1869-1927), В.Д. Тимаков (1904-1977), Е.И. Марциновский (1874-1934), В.М. Жданов (1914-1987), З.В. Ермольева (1898-1979), А.А. Смородинцев (1901-1989), М.П. Чумаков (1909-1990), П.Н. Кашкин (1902-1991), Б.П. Первушин (1895-1961) и многих других.

НАУЧНЫЕ ВИРУСОЛОГИЧЕСКИЕ УЧРЕЖДЕНИЯ

Первые вирусологические лаборатории в нашей стране были созданы в 30-е годы: в 1930 г. - лаборатория по изучению вирусов растений в Украинском институте защиты растений, в 1935 г. - отдел вирусов в Институте микробиологии АН СССР, а в 1938 г. он был реорганизован в отдел вирусов растений, которым в течение многих лет руко­водил В.Л. Рыжков. В 1935 г. была организована Централь­ная вирусологическая лаборатория Наркомздрава РСФСР в Москве, которой заведовал Л.А. Зильбер, а в 1938 г. эта лаборатория реорганизована в отдел вирусов Всесоюз­ного института экспериментальной медицины, его руко­водителем был назначен А.А. Смородинцев. В 1946 г. на базе отдела вирусов был создан Институт вирусологии АМН СССР, которому в 1950 г. присвоено имя Д.И. Ива­новского.

В течение 50-х и 60-х годов созданы научные и про­изводственные вирусологические учреждения в нашей стране: Институт и вирусных энцефалитов АМН СССР, Институт вирусных препаратов Министерства здравоохранения СССР, Киевский институт ин­фекционных болезней, Всесоюзный научно-исследова­тельский институт гриппа Министерства здравоохранения СССР в Ленинграде и ряд других.

Важную роль в подготовке кадров вирусологов сыграла организация в 1955 г. кафедры вирусологии в Централь­ном институте усовершенствования врачей МЗ СССР. Кафедры вирусологии были созданы на биологических факультетах Московского и Киевского университетов.

Человеческий организм подвержен всякого рода заболеваниям и инфекциям, также довольно часто болеют животные и растения. Ученые прошлого века пытались выявить причину многих заболеваний, но, даже определив симптоматику и течение болезни, они не могли уверенно сказать о ее причине. И лишь в конце девятнадцатого века появился такой термин, как "вирусы". Биология, а точнее один из ее разделов - микробиология, стала изучать новые микроорганизмы, которые, как оказалось, уже давно соседствуют с человеком и вносят свою лепту в ухудшение его здоровья. Для того чтобы эффективнее бороться с вирусами, выделилась новая наука - вирусология. Именно она может рассказать о древних микроорганизмах очень много интересного.

Вирусы (биология): что это такое?

Только в девятнадцатом веке ученые выяснили, что возбудителями кори, гриппа, ящура и других инфекционных заболеваний не только у людей, но и у животных и растений являются микроорганизмы, невидимые человеческому глазу.

После того как были открыты вирусы, биология не сразу смогла дать ответы на поставленные вопросы об их строении, возникновении и классификации. У человечества появилась потребность в новой науке - вирусологии. В настоящий момент вирусологи работают над изучением уже знакомых вирусов, наблюдают за их мутациями и изобретают вакцины, позволяющие уберечь живые организмы от заражения. Довольно часто с целью эксперимента создается новый штамм вируса, который хранится в "спящем" состоянии. На его основе разрабатываются препараты и проводятся наблюдения по их воздействию на организмы.

В современном обществе вирусология является одной из самых важных наук, а самый востребованный научный сотрудник - это вирусолог. Профессия вирусолога, по прогнозам социологов, с каждым годом становится все более популярной, что хорошо отражает тенденции современности. Ведь, как считают многие ученые, скоро с помощью микроорганизмов будут вестись войны и устанавливаться правящие режимы. В таких условиях государство, имеющее высококвалифицированных вирусологов, может оказаться самым стойким, а его население наиболее жизнеспособным.

Появление вирусов на Земле

Ученые относят возникновение вирусов к самым древним временам на планете. Хотя с точностью сказать, каким образом они появились и какую форму имели в то время, невозможно. Ведь вирусы имеют способность проникать в абсолютно любые живые организмы, им доступны простейшие формы жизни, растения, грибы, животные и, конечно же, человек. Но вирусы не оставляют после себя никаких видимых остатков в виде окаменелостей, например. Все эти особенности жизни микроорганизмов существенно затрудняют их изучение.

  • они были частью ДНК и со временем отделились;
  • они были встроены в геном изначально и при определенных обстоятельствах "проснулись", начали размножаться.

Ученые предполагают, что в геноме современных людей находится огромное количество вирусов, которыми были заражены наши предки, и теперь они естественным образом встроились в ДНК.

Вирусы: когда были обнаружены

Изучение вирусов - это достаточно новый раздел в науке, ведь считается, что он появился только в конце девятнадцатого века. На самом деле можно сказать, что неосознанно открыл сами вирусы и вакцины от них английский врач в конце девятнадцатого века. Он работал над созданием лекарства от оспы, косившей в те времена сотни тысяч людей во время эпидемии. Он сумел создать экспериментальную вакцину прямо из болячки одной из девушек, болевшей оспой. Эта прививка оказалась весьма эффективной и спасла не одну жизнь.

Но официальным "отцом" вирусов считается Д. И. Ивановский. Этот русский ученый долгое время изучал болезни растений табака и сделал предположение о мелких микроорганизмах, которые проходят через все известные фильтры и не могут существовать самостоятельно.

Спустя несколько лет француз Луи Пастер в процессе борьбы с бешенством выявил его возбудителей и ввел термин "вирусы". Интересен тот факт, что микроскопы конца девятнадцатого века не могли показать ученым вирусы, поэтому все предположения делались относительно невидимых микроорганизмов.

Развитие вирусологии

Середина прошлого века дала мощный толчок в развитии вирусологии. К примеру, изобретенный электронный микроскоп позволил, наконец, увидеть вирусы и провести их классификацию.

В пятидесятые годы двадцатого века была изобретена вакцина от полиомиелита, ставшая спасением от этого страшного заболевания для миллионов детей по всему миру. К тому же ученые научились выращивать человеческие клетки в специальной среде, что привело к появлению возможности изучать вирусы человека в лабораторных условиях. В настоящий момент описано уже около полутора тысяч вирусов, хотя еще пятьдесят лет назад известными были всего лишь двести подобных микроорганизмов.

Свойства вирусов

Вирусы имеют ряд свойств, которые отличают их от других микроорганизмов:

  • Очень маленькие размеры, измеряющиеся в нанометрах. Крупные вирусы человека, например оспы, имеют размер триста нанометров (это всего лишь 0,3 миллиметра).
  • Каждый живой организм на планете содержит два вида нуклеиновых кислот, а вирусы имеют только одну.
  • Микроорганизмы не могут расти.
  • Размножение вирусов происходит только в живой клетке хозяина.
  • Существование происходит только внутри клетки, вне ее микроорганизм не может проявлять признаков жизнедеятельности.

Формы вирусов

К настоящему моменту ученые могут с уверенностью заявлять о двух формах данного микроорганизма:

  • внеклеточная - вирион;
  • внутриклеточная - вирус.

Вне клетки вирион находится в "спящем" состоянии, он не поддет никаких признаков жизни. Попав в организм человека, он находит подходящую клетку и, только проникнув в нее, начинает активно размножаться, превращаясь в вирус.

Строение вируса

Практически все вирусы, несмотря на то что они довольно разнообразны, имеют однотипное строение:

  • нуклеиновые кислоты, образующие геном;
  • белковая оболочка (капсид);
  • некоторые микроорганизмы поверх оболочки имеют еще и мембранное покрытие.

Ученые считают, что подобная простота строения позволяет вирусам выживать и приспосабливаться в изменяющихся условиях.

В настоящий момент вирусологи выделяют семь классов микроорганизмов:

  • 1 - состоят из двуцепочечной ДНК;
  • 2 - содержат одноцепочечную ДНК;
  • 3 - вирусы, копирующие свою РНК;
  • 4 и 5 - содержат одноцепочечную РНК;
  • 6 - трансформируют РНК в ДНК;
  • 7 - трансформируют двуцепочечную ДНК через РНК.

Несмотря на то что классификация вирусов и их изучение шагнули далеко вперед, ученые допускают возможность появления новых видов микроорганизмов, отличающихся от всех уже перечисленных выше.

Типы вирусной инфекции

Взаимодействие вирусов с живой клеткой и способ выхода из нее определяет тип инфекции :

  • Литическая

В процессе инфицирования все вирусы одновременно выходят из клетки, и в результате она погибает. В дальнейшем вирусы "селятся" в новых клетках и продолжают их разрушать.

  • Персистентная

Вирусы выходят из клетки хозяина постепенно, они начинают поражать новые клетки. Но прежняя продолжает свою жизнедеятельность и "рождает" все новые вирусы.

  • Латентная

Вирус встраивается в саму клетку, в процессе ее деления он передается другим клеткам и распространяется по всему организму. В подобном состоянии вирусы могут находиться достаточно долгое время. При необходимом стечении обстоятельств они начинают активно размножаться и инфекция протекает по уже перечисленным выше типам.

Россия: где изучают вирусы?

В нашей стране вирусы изучают уже достаточно давно, и именно российские специалисты лидируют в этой области. В Москве расположен НИИ вирусологии имени Д. И. Ивановского, специалисты которого вносят существенный вклад в развитии науки. На базе НИИ работаю научно-исследовательские лаборатории, содержится консультативный центр и кафедра вирусологии.

Параллельно российские вирусологи работают с ВОЗ и пополняют свою коллекцию штаммов вирусов. Специалисты НИИ работают по всем разделам вирусологии:

  • общей:
  • частной;
  • молекулярной.

Стоит отметить, что в последние годы наметилась тенденция к объединению усилий вирусологов всего мира. Такая совместная работа является более эффективной и позволяет серьезно продвинуться в изучении вопроса.

Вирусы (биология как наука это подтвердила) - это микроорганизмы, сопровождающие все живое на планете на протяжении всего их существования. Поэтому их изучение является столь важным для выживания многих видов на планете, в том числе и человека, который уже не раз в истории становился жертвой различных эпидемий, вызванных вирусами.

ВОПРОС №1 «ИСТОРИЯ ВИРУСОЛОГИИ. РОЛЬ ВИРУСОВ В ИНФЕКЦИОННОЙ ПАТОЛОГИИ ЖИВОТНЫХ ЧЕЛОВЕКА».

В первый период – люди не знали сущности заболевания, только описывали его. В 18 столетии врач Дженер разработал против оспы вакцину, с помощью которой ее лечили. Далее заслуга Пастера, в его время существовало бешенство. Он доказал, что бешенство передается путем покуса. На питательных средах ничего не вырастало. После работ Пастера было выяснено, что заразные болезни вызываются мельчайшими организмами (микробами). Не один из методов бактериальных исследований не позволял выделить микробов, с присутствием которых связаны оспа, ящур, чума.

В 1931 году предложили метод культивирования куриных эмбрионов. Этот метод отличается высокой чувствительностью, исключается заражение спонтанными вирусами. Наиболее быстрое развитие вирусологии началось после 1948 года. Эндерс предложил метод однослойных культур клеток и тканей. Этот метод позволил изучить многие вирусы, получить вакцины. Учение о вирусах формировалось в самостоятельную науку вирусологию, которая изучает вирусы, заболевания вызываемые ими. Общая вирусология изучает природу и происхождение вирусов, строение и химический состав, устойчивость к физико-химическим факторам, ее предметом является также взаимодействие вируса и клетки, генетику вирусов, особенности формирования иммунитета против вирусов, общих принципов диагностики и профилактики. Она изучает те же вопросы, что и общая вирусология. Вирусы как объекты имеют единицы измерения.

ВОПРОС №2 «ПРЕДМЕТ И ЗАДАЧИ ОБЩЕЙ И ЧАСТНОЙ ВЕТЕРИНАРНОЙ ВИРУСОЛОГИИ. ИСТОРИЯ ОТКРЫТИЯ ВИРУСОВ. ДОСТИЖЕНИЯ ОТЕЧЕСТВЕННОЙ ВИРУСОЛОГИИ».

Вирусология – наука изучающая природу и происхождение вирусов, заболевания ими вызываемые. Общая вирусология изучает природу и происхождение вирусов, строение и химический состав, устойчивость к физико-химическим факторам, ее предметом является также взаимодействие вируса и клетки, генетику вирусов, особенности формирования иммунитета против вирусов, общих принципов диагностики и профилактики. Она изучает те же вопросы, что и общая вирусология. Вирусы как объекты имеют единицы измерения. Период – люди не знали сущности заболевания, только описывали его. В 18 столетии врач Дженер разработал против оспы вакцину, с помощью которой ее лечили. Далее заслуга Пастера, в его время существовало бешенство. Он доказал, что бешенство передается путем покуса. На питательных средах ничего не вырастало. После работ Пастера было выяснено, что заразные болезни вызываются мельчайшими организмами (микробами). Не один из методов бактериальных исследований не позволял выделить микробов, с присутствием которых связаны оспа, ящур, чума.

Пастеру не приходила в голову мысль, о существовании возбудителя, отличного по своей природе от микробов. Первый открытый вирус поражал табачные растения (табачная мозаика). В то время этот вирус приносил большой экономический урон. Ученые задались вопросом выяснить причину этого заболевания. Эта работа была поручена Д.И. Ивановскому.

В результате наблюдений Д.И.Ивановский и В.В.Половцев впервые высказали предположение, что болезнь табака, описанная в 1886 году A.D.Mayer в Голландии под название мозаичной, представляет собой не одно, а два совершенно различных заболевания одного и того же растения: одно из них – рябуха, возбудителем которого является грибок, а другое неизвестного происхождения. Исследование мозаичной болезни табака Д.И.Ивановский продолжает в Никитинском ботаническом саду (под Ялтой) и ботанической лаборатории Академии наук и приходит к выводу, что мозаичная болезнь табака вызывается бактериями, проходящими через фильтры Шамберлана, которые, однако, не способны расти на искусственных субстратах. Возбудитель мозаичной болезни называется Ивановским то “фильтрующимися” бактериями, то микроорганизмами, так как сформулировать сразу существование особого мира вирусов было весьма трудно. Подчеркивая, что возбудитель мозаичной болезни табака не мог быть обнаружен в тканях больных растений с помощью микроскопа и не культивировался на искусственных питательных средах.

Он основал вирусологию. Повышенный интерес к вирусологии был вызван тем, что вирусные болезни имеют ведущее значение. 75% болезней вызывается вирусами. Они наносят огромный экономический урон. После открытия Ивановского датский ученый Бейеринг повторил опыты Ивановского и подтвердил, что возбудитель мозаики проходит через фарфоровые фильтры и доказал, что это жидкий живой контагий. Дал ему название вирус. В 1903 году были открыты возбудители чумы свиней, инфекционной анемии. В 1915-1917 годах вирусы бактерий – бактериофаги, к концу 40-х годов было открыто более 40 вирусов, а за последние 40 лет стало известно более 500 вирусных болезней. Ученые задались целью получить вирусные агенты.

В 1931 году предложили метод культивирования куриных эмбрионов. Этот метод отличается высокой чувствительностью, исключается заражение спонтанными вирусами. Наиболее быстрое развитие вирусологии началось после 1948 года. Эндерс предложил метод однослойных культур клеток и тканей.

ВОПРОС №3 «ПРИНЦИПЫ СОВРЕМЕННОЙ КЛАССИФИКАЦИИ ВИРУСОВ, ОСНОВНЫЕ ГРУППЫ ВИРУСОВ».

Современная классификация вирусов универсальна для вирусов позвоночных, беспозвоночных, растений и простейших. Она основана на фундаментальных свойствах вирионов, из которых ведущими являются признаки характеризующие нуклеиновую кислоту, морфологию, стратегию генома, АГ свойства. Фундаментальные свойства поставлены на 1 место, поскольку вирусы со сходными АГ свойствами обладают и сходным типом нуклеиновой кислоты, сходными морфологическими и биофизическими свойствами. Важным признаком для классификации, который учитывается нарду со структурными признаками, является стратегия вирусного генома, под которой понимают используемый вирусом способ репродукции, обусловленный особенностями его генетического материала. АГ и другие биологические свойства являются признаками, лежащими в основе формирования вида и имеющими значение в пределах рода. В основу современной классификации положены следующие основные критерии: 1) тип нуклеиновой кислоты (РНК или ДНК), ее структура (количество нитей); 2) наличие липопротеидной оболочки; 3) стратегия вирусного генома; 4) размер и морфология вириона, тип симметрии, число капсомеров; 5)феномены генетических взаимодействий; 6) круг восприимчивых хозяев; 7) патогенность, в том числе патологические изменения в клетках и образование внутриклеточных включений; 8) географическое распространение; 9) способ передачи; 10) АГ свойства. На основании перечисленных признаков вирусы делятся на семейства, подсемейства, роды и типы. Для упорядочения наименований вирусов выработан ряд правил. Название семейств оканчивается на «viridae» «virinae» «virus». В названии допускаются привычные латинизированные обозначения, цифры и обозначения типов, сокращения, буквы и их сочетания.

ВОПРОС №4 «ХИМИЧЕСКИ СОСТАВ И ФИЗИЧЕСКАЯ СТРУКТУРА ВИРУСОВ. ПОНЯТИЕ О ВИРИОНЕ, КАПСИДЕ, КАПСОМЕРЕ. ТИП СИММЕТРИИ.

Вирусы состоят из фрагмента генетического материала, либо ДНК, либо РНК, составляющей сердцевину вируса, и окружающей эту сердцевину защитной белковой оболочкой, которую называют капсидом . Полностью сформированная инфекционная частица называется вирионом . У некоторых вирусов, таких, как вирусы герпеса или гриппа, есть еще и дополнительная липопротеидная оболочка , которая возникает из плазматической мембраны клетки-хозяина. В отличие от всех остальных организмов вирусы не имеют клеточного строения. Оболочка вирусов часто бывает построена из идентичных повторяющихся субъединиц – капсомеров. Из капсомеров образуются структуры с высокой степенью симметрии, способные кристаллизироваться. Это позволяет получить информацию об их строении как с помощью кристаллографических методов, основанных на применении рентгеновских лучей, так и с помощью электронной микроскопии. Как только в клетке-хозяине появляются субъединицы вируса, они сразу же проявляют способность к самосборке в целый вирус. Самосборка характерна и для многих других биологических структур, она имеет фундаментальное значение в биологических явлениях. Непременным компонентом вирусной частицы является какая-либо одна из двух нуклеиновых кислот, белок и зольные элементы. Эти три компонента являются общими для всех без исключения вирусов, тогда как остальные липиды и углеводы – входят в состав далеко не всех вирусов. Вирусы, в состав которых наряду с белком и нуклеиновой кислотой входят также липоиды и углеводы, как правило, принадлежат к группе сложно устроенных вирусов. Кроме белков, входящих в состав нуклеопротеидного «ядра», вирионы могут содержать еще вирус – специфические белки, которые были встроены в плазматические мембраны зараженных клеток и покрывают вирусную частицу, когда она выходит из клетки или «отпочковывается» от ее поверхности. Кроме того, у некоторых вирусов с оболочкой существует субмембранный матриксный белок между оболочкой и нуклеокапсидом. Вторую большую группу вирус-специфических белков составляют некапсидные вирусные белки. Они в основном имеют отношение к синтезу нуклеиновых кислот вириона. Четверым компонентом, обнаруживаемым иногда в очищенных вирусных препаратах, являются углеводы (в количестве, превышающем содержание сахара в нуклеиновой кислоте). В составе элементарных телец вируса гриппа и классической чумы птиц находятся до 17 % углеводов.

По морфологическим признакам все вирусы подразделяются на:

1)Палочковидные

2)Шаровидные

3)Кубоидальные

4)Булавовидные

5)Нитевидные

Основными являются первые 4, нитевидные промежуточной формой.

Понятие о типе симметрии.

В зависимости т расположения капсомеров в белковой оболочке все вирусы подрываются на 3 группы:

1)Спиральный тип

2)Кубический тип

3)Комбинированный

1 – имеют вирусы, наделенный крупными размерами и обладающие высоким полиморфизмом. Капсомеры у них уложены в виде спирали с разным диаметром и таким образом чаще всего шарообразную оболочку, иногда они покрыты второй оболочкой (пеплосом). Нуклеиновая кислота скручена в виде пружины и располагается витками в виде белковых молекул.

2 – у таких вирусов капсомеры располагаются в виде правильного многогранника (икосаэдра). Она скручена в виде клубка и находится в центре.

У большинства вирусов капсомеры имеют форму 5-6 гранных призм.

3 – этот тип симметрии характерен для бактериофагов. Все разновидности бактериофагов имеют головку по типу кубической симметрии, а хвостовой отросток со спиральным строением. Головка с поверхности покрыта белковой оболочкой, которая состоит из однородных белковых субъединиц. В полости головки располагается 1 из нуклеиновых кислот. Хвостовой конец состоит из полого стержня. Заканчивается шестиугольной пластинкой на конце. Хвостовой конец окружен воротничком, к которому прикреплен чехол покрывающей весь стержень.

Химический состав вирусов.

Методы очистки и концентрации вирусов путем высаливания, адсорбции, ультрафильтрации, осаждения позволили изучить химический состав. В составе вирусов имеются белки и одна из нуклеиновых кислот. Вирусы крупных и средних размеров содержат еще и липиды, углеводы и некоторые другие, органические и неорганические соединения.

Большая часть белка и связанных с ним липидов и углеводов – оболочка. Вещества, входящие в состав вирусов имеют особенности, как в химическом, так и биологическом отношении.

Белки – основная часть (20 АК).

Значение вирусных белков – защитная функция (формирование капсиды).

В состав вируса входят ферменты, имеющие белковую природу (адсорбция, адресная функция), наделены иммунными свойствами (обуславливают антигенные свойства).

Особенности вирусных белков:

1.Обладают свойством самосборки (по мере их накопления вирусные белки агрегируются).

2.Обладают избирательной чувствительностью по отношению физических и химических факторов.

3.Не подвергаются гидролизу под действием протеолитических ферментов.

Белки от 50-75% массы вирионов составляют.

Зараженные вирусным геном клетки кодируют синтез 2 групп белка:

Структурные===, ===несруктурные===

1.Струкурные – количество в составе вириона, в зависимости от сложности организации вириона. Структурные белки 2 группы делятся: а. капсидные б. суперкапсидные (пепломеры).

Сложноорганизованные вирусы содержат оба типа белков. У ряда таких вирусов в составе капсида имеются ферменты осуществляют транскрипцию, репликацию.

Суперкапсидные белки формируют шипы (до7-10 нм). Основная функция гликопротеидов – взаимодействие со специфическими рецепторами клетки. Другая функция – участие в синтезе клеточной и вирусной мембран.

«Адресная функция» – вырабатывают в процессе эволюция, это поиск чувствительной клетки.

Реализуется путем наличия специальных белков, которые узнают специальные рецепторы на клетке.

Неструктурные (временные) вирусные белки – предшественники вирусных белков, ферменты синтеза ДНК/РНК полимеразы, обеспечивают транскрипцию и репликацию вирусного генома, белки регуляторы, полимеразы.

Липиды – в сложных вирусах находятся в составе суперкапсида (от 15 до 35 процентов). Липидный компонент стабилизирует структуру вирусной частицы.

Углеводы – до 10-13%. Входят в состав гликопротеидов. Играют существенную роль в структуре и функции белка.

Нуклеиновые кислоты – постоянная составная часть. Сложные полимерные соединения. Выделены Мишером в 1869 году из лейкоцитов. В отличие от бактерий содержат только 1 аминокислоту. В структурном плане нуклеиновые кислоты бывают различными.

1.Линейная двуспиральная с открытыми концами.

2.Линейная двуспиральная с замкнутыми концами.

3.Линейная односпиральная.

4.Кольцевая односпиральная.

1.Линейная односпиральная.

2.Линейная фрагментированная.

3.Кольцевая односпиральная.

5.Линейная двуспиральная фрагментированная.

ВОПРОС №5 «УСТОЙЧИВОСТЬ ВИРУСОВ К ФИЗИКО-ХИМИЧЕСКИМ ФАКТОРАМ. ПРАКТИЧЕСКОЕ ИСПОЛЬОВАНИЕ ЭТИХ СВОЙСТВ».

Разные группы вирусов обладают неодинаковой устойчивостью во внешней среде. Наименее устойчивы вирусы, имеющие липопротеидные оболочки, наиболее устойчивы изометрические вирусы. Так ортомиксовирусы и парамиксовирусы инактивируются на поверхностях за несколько часов, тогда как вирусы полиомиелита, адено-, реовирусы сохраняют инфекционную активность несколько дней. Однако из этого правила имеются и исключения. Так, вирус оспы устойчив к высыханию и сохраняется в экскретах многие недели и месяцы. Вирус гепатита В устойчив к действию неблагоприятных внешних факторов и сохраняет свою активность в сыворотке даже при кратковременном кипячении. Чувствительность вирусов к ультрафиолетовому и рентгеновскому облучению зависит преимущественно от размеров их генома. Чувствительность вирусов к формальдегиду и другим химическим веществам, инактивирующим генетический материал, зависит от многих условий, среди которых следует назвать плотность упаковки нуклеиновой кислоты в белковый футляр, размеры генома, наличие или отсутствие внешних оболочек. Вирусы, имеющие липопротеидные оболочки, чувствительны к эфиру, хлороформу и детергентам, в то время как просто устроенные изометрические и палочковидные вирусы устойчивы к их действию. Важной особенность вирусов является чувствительность к РН. Есть вирусы, устойчивые к кислым значениям РН (2,2-3,0), например вирусы, вызывающие кишечные инфекции и проникающие в организм алиментарным путем. Однако большинство вирусов инактивируется при кислых и щелочных значениях РН.

ВОПРОС №6 «ВИРУСНЫЕ НУКЛЕИНОВЫЕ КИСЛОТЫ. ИХ РАЗНОВИДНОСТИ, СТРУКТУРЫ, ОСНОВНЫЕ СВОЙСТВА.

Молекулы вирусных ДНК могут быть линейными или кольцевыми, двухцепочечными или одноцепочечными по всей своей длине или же одно цепочечными только на концах. Большинство нуклеотидных последовательностей в вирусном геноме встречается лишь по одному разу, однако на концах могут находиться повторяющиеся, или избыточные участки. Структуре концевых участков вирусных ДНК существуют также большие различия в величине генома. Вирусов животных ДНК почти не подвергается модификациям. Например, хотя ДНК клеток-хозяев и содержит много метилированных оснований, у вирусов имеется в лучшем случае лишь несколько метильных групп на геном. Размеры вирионов РНК – вирусов сильно варьируют – от 7.106 дальтон у пикорнавирусов до >2.108 дальтон у ретровирусов; однако размеры РНК и, следовательно, объем содержащейся в ней информации различаются в значительно меньшей степени. РНК пикорнавирусов – вероятно, наименьшая из известных – содержит около 7500 нуклеотидов, а РНК парамиксовирусов – едва ли не самая крупная – почти 15000 нуклеотидов. По-видимому, всем независимо реплицирующимся. Нуклеиновые кислоты – постоянная составная часть. Сложные полимерные соединения. Выделены Мишером в 1869 году из лейкоцитов. В отличие от бактерий содержат только 1 аминокислоту. В структурном плане нуклеиновые кислоты бывают различными.

1.Линейная односпиральная.2.Линейная фрагментированная.3.Кольцевая односпиральная.5.Линейная двуспиральная фрагментированная.

ВОПРОС №7 «БЕЛКИ ВИРУСОВ, ИХ ОСОБЕННОСТИ (ХАРАКТЕРИСТИКА СВОЙСТВ НЕЙРАМИНИДАЗ И АНТИГЕНОВ МИКСОВИРУСОВ)».

Представляют собой чрезвычайно разнородный класс биологических макромолекул. Обязательными компонентами белков являются АК. Альфа-АК – это сравнительно простые органические молекулы. Молекулярная масса АК лежит в пределах 90-250Д. В состав полипептида может входить от 15 до 2000 АК. Наиболее часто встречаются полипептиды с массой от 20 до 700 кД, состоящие из 100-400 АК. Вирусные белки – белки, кодируемые геномом вируса, – синтезируются в зараженной клетке. Исходя из функции локализации, структуры и регуляции синтеза, вирусные белки делят на структурные и неструктурыные; ферменты, предшественники, гистоноподобные капсидные белки,; мембранные, трансмембранные.

Структурные белки – все белки, входящие в состав зрелых внеклеточных вирионов. Они в вирионе выполняют ряд функций: 1) защита НК от внешних повреждающих воздействий; 2) взаимодействие с мембраной чувствительных клеток в ходе первого этапа их заражения; 3) взаимодействие с вирусной НК в ходе и после ее упаковки в капсид; 4) взаимодействие между собой в ходе самосборки капсида; 5) организация проникновения вируса в чувствительную клетку. Эти 5 функции присущи структурными белкам всех без исключения вирусов. Все функции могут реализоваться одним белком. 6) способность к разрушению в ходе освобождения НК; 7) организация выхода из зараженной клетки в ходе формирования вириона. 8) организация «плавления» и слияния клеточных мембран.

Также белки могут обладать свойствами катализировать те или иные биохимические реакции: 9) РНК-зависимая РНК-полимеразная активность. Эту функцию выполняют структурные белки всех вирусов, в вирионах которых содержится РНК, не играющая роль мРНК; 10) РНК-зависимая ДНК-полимеразная активность – эту функцию выполняют специальные белки ретровирусов, именуемые ревертазами; 11) защита и стабилизация вирусной НК после ее выхода из капсида в зараженной клетке.

В зависимости от расположения того или иного белка в вирионе выделяют группы белков: А) Капсидные белки – в вирионах сложно организованных вирусов эти белки могут выполнить только 2-3 функции – защита НК, способность к самосборке и разрушению в ходе освобождения НК. В вирионах простых вирусов их функции обычно более многообразны. Б) Белки вирусной суперкапсидной оболочки – их роль сводится в основном к организации почкования вирионов, способности к самосборке, взаимодействию с мембраной чувствительных клеток, организации проникновения в чувствительную клетку. В) Матриксные белки – белки промежуточного слоя вирионов, расположенного сразу под суперкапсидной оболочкой некоторых вирусов. Их основные функции: организация почкования, стабилизация структуры вириона за счет гидрофобных взаимодействий, посредничество в осуществлении связи суперкапсидных белков с капсидными. Г) Белки вирусных сердцевин – представлены в основном ферментами. Вирусы, имеющие многослойные капсиды, могут иметь и защитную роль. Д) Белки, ассоциированные с НК самого внутреннего слоя вирионов.

Неструктурные белки – все белки, кодируемые вирусным геномом, но не входящие в вирион. Они изучены хуже, что связано с несравненно большими трудностями, которые возникают при их идентификации и выделении по сравнению со структурными белками. Неструктурные белки в зависимости от их функции делят на 5 групп: 1) Регуляторы экспрессии вирусного генома – непосредственно воздействуют на вирусную НК, препятствуя синтезу других вирусных белков, или, наоборот, запуская их синтез. 2) Предшественники вирусных белков – являются предшественниками других вирусных белков, которые образуются из них в результате сложных биохимических процессов. 3) Нефункциональные пептиды – образуются в зараженной клетке. 4) Ингибиторы клеточного биосинтеза и индукторы разрушения клеток – сюда относятся белки, которые разрушают клеточные ДНК и мРНК, модифицируют клеточные ферменты, придавая им вирусоспецифическую активность. 5) Вирусные ферменты – ферменты, кодируемые вирусным геномом, но не входящие в состав вирионов.

ВОПРОС №8 «ПЕРИОДЫ И ЭТАПЫ РЕПРОДУКЦИИ ВИРУСОВ. ТИПЫ ВЗАИМОДЕЙСТВИЯ».

Взаимодействие вирусов с клетками хозяев и репродукция вирусов.

Вирусы проходят в клетке сложный цикл развития. Морфогенез вирусов представляет собой основной этап этого развития и состоит из формообразовательных процессов приводящих к образованию вириона как заключению формы развития вируса. Онтогенез и репродукция развития вируса регулируется геномом.

В 50-х годах установлено, что размножение вируса происходит путем репродукции, т.е. воспроизведение нуклеиновых и белков с последующей сборкой вириона. Эти процессы происходят в разных частях клетки, например в ядре и цитоплазме (дизъюнктивный способ репродукции). Вирусная репродукция представляет собой уникальную форму, выражения чужеродной инфекции в клетках человека, животных, насекомых и бактерий.

Морфогенез регулируется с помощью морфогенетических генов. Существует прямопропорциональная зависимость между сложностью ультраструктуры вириона и его морфогенеза. Чем сложнее организация вириона, тем больший путь развития проходит вирус. Весь этот процесс осуществляется с помощью специальных ферментов. Т.к. вирусы не имеют собственного метаболизма то нуждается в ферментах. Однако у вирусов обнаружено свыше 10 ферментов, разных по происхождению и функциональному значению.

По происхождению: вирионные, вирус-индуцированные, клеточные, модифицированные вирусами. Первые входят в состав многих ДНК и РНК содержащих вирусов. ДНК-зависимая РНК-полимераза, протеинкиназа, АТФ-аза, рибонуклеаза, РНК-зависимая РНК-полимераза, экзонуклеаза и другие.

К вирионным формам относятся: гемоглютиннин и нейраминидаза, лизоцим.

Вирус-индуцирующие – это ферменты, структура которых закодирована в геноме, а синтез происходит на рибосоме хозяина – ранние вирионные белки.

Клеточные – включают ферменты клетки хозяина, не являются вирусоспецифическими, однако при взаимодействии с вирусами активность может модифицироваться.

По функциональному значению ферменты делятся на 2 группы:

— Участвующие в репликации и транскрипции;

— Нейраминидаза, лизоцим и АТФ-аза, которые способствуют проникновению вируса в клетку и выходу зрелых вирионов из клетки.

Репродукция вирионов характеризуется сменой стадий:

Согласно современным данным различают 3 основных периода в цикле репродукции:

1.Начальный (подготовительный)2.Средний (латентный)3.Конечный (заключительный)

Каждый из периодов включает ряд этапов:

Первый этап

1.Адсорбция вируса на клетке.

2.Проникновение в клетку.

3.Депротеинизация (высвобождение нуклеиновой кислоты).

Второй этап

1.Биосинтез ранних вирусных белков

2.Биосинтез вирусных компонентов

Третий этап

1.Формирование зрелых вирионов

2.Выход зрелых вирионов из клетки.

1.Адсорбция – физико-химический процесс, является следствием разности зарядов. Эта стадия обратима на ее исход оказывает влияние кислотность среды, температура и другие процессы.

Основную роль в адсорбции вируса играет взаимодействие вируса с комплементарными рецепторами клетки. По химической природе они относятся к мукополипротейдам. На степень скорости адсорбции влияют гормоны действующие на рецепторы. Адсорбция вируса может и не наступить, что связано с различной чувствительностью клеток к вирусам. Чувствительность, в свою очередь определяется:

Наличием в клеточной оболочке и цитоплазме ферментов, способных разрушить оболочку и освободить нуклеиновую кислоту.

Наличием ферментов, материала, обеспечивающих синтез вирусных компонентов.

2.Проникновение вируса в клетку:

Вирус проникает 3 путями – путем непосредственного впрыскивания (характерно для фагов); путем разрушения клеточной оболочки (путь сплавления – характерно для вирусов растений); путем пиноцитоза (характерен для вирусов позвоночных).

3.Репродукция ДНК-содержащих вирусов.

4.Выход вириона из клетки:

1.Просачиваются через оболочку клетки и одеваются суперкапсидом, в состав в состав которого включаются компоненты клетки: липиды, полисахариды. В данном случае клетка сохраняет свою жизнедеятельность затем погибает. В некоторых случаях в процессе репродукции процессы могут происходить в течение нескольких лет, но жизнедеятельность сохраняется. При этом способе зрелые вирионы из клетки выходят постепенно и относительно длительно. Этот путь характерен для сложных вирусов, имеющих двойную оболочку.

Аномальные вирусы.

В процессе репродукции образуются различные аномальные вирусы. Усилиями академика Жданова в последние годы были открыты псевдовирусы, состоящие из РНК-вируса и белков клетки, образующих капсид. Они обладают инфекционными свойствами, но в силу особенности капсида не поддаются действию антител, образующих ответ на этот вирус.

Явление образования таких вирусов объясняется длительным вирусоносительством при наличии в организме специфических АТ.

Причинами формирования таких вирионов являются:

1.Высокая множественность, в результате чего клетка не в состоянии обеспечить все потомство энергетическим материалом.

2.Действие интерферона – он влияет на синтез ДНК и РНК вирусов.

ВОПРОС №9 «ОСОБЕННОСТИ БИОСИНТЕЗА ДНК-СОДЕРЖАЩИХ ВИРУСОВ. ПОНЯТИЕ ТРАНСКРИПЦИИ И ТРАНСЛЯЦИИ».

Транскрипция – переписывание ДНК на РНК – осуществляется с помощью фермента РНК-полимеразы, продуктами является биосинтез и-РНК. ДНК-содержащие вирусы, репродукция которых происходит в ядре, используют для транскрипции клеточную полимеразу. РНК-содержащие вирусы ф-ю и-РНК выолняет сам геном. У некоторых РНК-содержащих вирусов передача генетической информации осуществляется по формуле РНК-РНК-белок. К этой группе вирусов относятся – пикорновирусы, корновирусы.

Синтез белка происходит в результате трансляции в РНК.

Под воздействием ферментов у ДНК-содержащих вирусов осуществляется синтез и-РНК, и-РНК посылается на рибосомы чувствительной клетки. На рибосомах клетки начинается синтез ранних вирионных белков (наделены свойствами – ферментами, блокируют клеточный метаболизм).

Ранние вирионные белки дают начало образованию ранних вирионных кислот.

По мере накопления ранних вирионных белков они блокируют себя и процесс перестраивается на рибосомном аппарате. Идет сборка вирионов и вновь сформировавшиеся вирионы покидают клетку-мать.

ВОПРОС №10 «ТИПЫ ВЗАИМОДЕЙСТВИЯ, ОСНОВНЫЕ ИСХОДЫ ВЗАИМОДЕЙСТВИЯ ВИРУСА С КЛЕТКОЙ».

1)Продуктивное взаимодействие – когда вирусы размножаясь в клетке образуют новое поколение 2)Абортивное – когда циклы репродукции прерывается на какой либо стадии. 3)Литическая реакция – когда после образования вируса клетка гибнет. 4)Латентная реакция – когда зараженная клетка длительно сохраняет свою жизнеспособность. 5)Интеграция – когда происходит объединение геномов вирусов и клеток. При этом происходит репродукция в клетках геномов, подчиняется общей регуляции. Репродукция вирусов вызывает в пораженных клетках патологические изменения выражающиеся функциональными и морфологическими нарушениями клеток. Возможные исходы процессов взаимодействия различных вирусов и клеток можно / на 5 типов: 1)Дегенерация клеток – приводит к их гибели. При этом клетка приобретает неправильную округлую форму, округляются, становятся более плотные, в цитоплазме появляется зернистость, сморщивание и фрагментация ядер. 2.Образование симпластов – это многоядерные. скопления вне клеточного. вещества. 3)Трансформация клеток – т.е. образование очагов беспорядочного трехмерного роста. Клетки в этих очагах приобретают новые наследственные свойства, непрерывно /, нагромождаясь друг на друга(опухоли). 4. Обр. внеклеточных включений, которые являются продуктами реакции клеток на вирусную частицу. 5)Латентная инфекция- это своеобразное сост. равновесия между вирусом и клеткой., когда инфекция не проявляется каким-либо признаком. Наблюдается незначительная продукция вируса, без повреждения клеток.

ВОПРОС №11 «ФАЗЫ ВЗАИМОДЕЙСТВИЯ РНК СОДЕРЖАЩЕГО ВИРУСА С КЛЕТКОЙ».

См вопрос №8

ВОПРОС №12 «ПАТОГЕНЕЗ ВИРУСНЫХ ИНФЕКЦИЙ

Тропизм – склонность вируса к тому или иному вороту инфекции. При респираторных инфекциях – вирус локализуется в носоглотке, трахее и легких; при энтеровирусных – в кале; при нейротропных – в ГМ или СМ; при дермотропных – в коже.

Патогенез вирусных инфекций.

Под патогенезом понимают совокупность процессов, вызывающих заболевание, его развитие и исход.

Патогенез определяется:

1.Тропизмом вируса

2.Количеством инфекционных частиц

3.Реакцией клетки на инфекцию.

4.Реакция организма на изменение клеток и тканей.

5.Скоростью репродукции.

В основе тропизма вирусов лежит чувствительность к вирусу определенных клеток.

Патогенез обусловлен основными механизмами взаимодействия вирусов с клетками:

Атрофия или дистрофия (ЦПД)

Образование телец включений

Образование симпластов и синцитиев

Трансформация

Латентная (хроническая) инфекция.

Патогенез на клеточном уровне – сюда входит ЦПД (видимые морфологические изменения клеток под воздействием того или иного вирусного агента). Характер ЦПД различен и зависит от:

1.Вида клетки

2.Биохимических свойств вируса

3.Заражающей дозы

Характер ЦПД оценивается по 4-х бальной системе крестовой и учитываются изменения, когда используются культуры клеток для титрования (т.е.).

Патогенез на организменном уровне.

Состояние инфекции как всякого биологического процесса динамично, динамку взаимодействия обычно называют инфекционным процессом. С одной стороны инфекционный процесс включает: внедрение, размножение и распространение возбудителя в организме, а также патогенное действие, а с другой стороны реакцию организма на это действие.

Патогенное действие возбудителя может быть неодинаковым. Оно проявляется в форме инфекционной болезни различной тяжести, в другом без ярко выраженных клинических признаков в третьих проявляется лишь изменениями, выявленными вирусологическими, биохимическими, иммунологическими методами. Это зависит от:

Количества и качества возбудителя, проникшего в восприимчивый организм, условий внутренней и внешней среды, определяющих резистентность животного и характеризуются взаимодействием микро и макроорганизмов. По характеру взаимодействия возбудителя болезни и организма выделяют 3 формы:

1.инфекционная болезнь – это инфекционный процесс, характеризуется определенными клиническими признаками, а также нарушениями, функциональными расстройствами и морфологическими повреждениями тканей.

2.Микробоносительство – иммунологическая субинфекция. Дифференцированный подход к различным формам инфекции дает возможность правильно вести диагностику инфекции выявлять зараженных животных в неблагополучном стаде. Патогенез любой инфекционной болезни определяется специальным действием возбудителя и ответными реакциями организма, зависящими от условий, в которых происходит взаимодействие микро и макроорганизма. При этом немаловажное значение имеют пути проникновения и распределения возбудителя. Ворота возбудителя: кожа, слизистые, мочеполовая система, плацента.

Каждый вид возбудителя эволюционно приспособился к таким путям внедрения, которое обеспечивает благоприятные условия для размножения и распространения – входные ворота для каждой инфекции характеризуется специфичностью. Чтобы проводить профилактику необходимо учитывать специфичность ворот инфекции. Например, при ИНАН возбудитель проникает через кожу при укусе насекомых. При ящуре основной путь алиментарный, при бешенстве – через покус.

Классификация вирусных инфекций.

Различают автономные и интегрированные инфекции. Автономные – при этом вирусный геном реплицируется независимо от клеточного генома. Автономная инфекция характерна для большинства вирусов.

Интегрированные инфекции – вирусный геном включается в состав клеточного генома, т.е. интегрируются в клеточный геном и реплицируются вместе с ним. При этом вирусный геном реплицируется и функционирует как составная часть клеточного генома. Интегрировать может как полный геном так и часть. При интегрированных инфекциях нет ни сборки вирусных частиц ни выхода.

Автономная инфекция – клетка иногда приобретает способность к неограниченному делению в результате нарушения регулирующих механизмов, контролирующих деление. Это чаще наблюдается при онкогенных инфекциях.

Продуктивная и абортивная инфекции:

1.Продуктивная – завершается выходом инфекционного потомства.

2.Абортивная – инфекционного потомства не образуется или его мало.

Формы течения – как и продуктивная, так и абортивная могут протекать в острой и хронической форме. Острая инфекция – это инфекция, в результате которой клетка либо выздоравливает либо погибает. Острая инфекция на клеточном уровне может быть цитолитической (когда происходит гибель клетки).

Хроническая инфекция – это инфекция, при которой клетка продолжает продуцировать вирусные частицы в течение длительного времени и предает эту способность дочерним клеткам. Чаще хроническую форму приобретает абортивная инфекция т.к. вирусный материал накапливается и передается дочерней клетке.

Смешенная инфекция – клетка заражается двумя или несколькими разными вирусами, в результате чего в клетке могут совмещаться два и более инфекционных процесса. Возможно несколько вариантов взаимодействия вируса в процессе смешанной инфекции:

1.Интерференция – один вирус подавляет действие другого.

2.Комплементация (экзальтация) – один вирус усиляет действие другого.

Классификация вирусных инфекций на организменном уровне.

В основу классификации положено:

1.Генерализация вируса

2.Продолжительность инфекции

3.Проявление клинических симптомов

4.Выделение вирусов в окружающую среду

Одна из форм может переходить в другую (например, очаговая в генерализованную, острая в хроническую).

Очаговая инфекция.

Вирус действует вблизи входных ворот инфекции, в связи с локальной репродукцией. Они имеют более короткий скрытый период по сравнению с генерализованными.

Генерализованные инфекции.

После ограниченного периода репродукции в первичных очагах происходит генерализация инфекций – вирусы проникают в другие системы, например при ящуре, полиомиелите, оспе.

Острая инфекция.

Длится непродолжительный период и протекает с выделением в окружающую среду. Заканчивается гибелью или выздоровлением.

Персистентная инфекция.

При продолжительном взаимодействии вируса с организмом. Она может быть латентная, хроническая, медленная.

Латентная инфекция – не сопровождается выделением вируса в окружающую среду, при определенных условиях может переходить в острую и хроническую.

При гриппе, сепсисе, СПИДе и др.

Хроническая инфекция.

Это длительно текущий процесс. Характеризуется периодами ремиссии (аденовирус, герпес).

Медленные инфекции – своеобразное взаимодействие вируса с фагом и характеризуется длительными инкубационными периодами.

Источники инфекции.

При изучении любого инфекционного заболевания важно знать источник, место постоянного обитания и размножения, пути распространения, место и сроки сохранения, возникновения во внешней среде, способы передачи от больных к здоровым.

Естественная среда – живой организм, здесь он находит все условия существования. Длительность пребывания вирусов колеблется в значительных пределах и зависит от биологических свойств, реактивности организма. От условий патогенеза. Источники инфекции – только зараженные организмы. Они играют роль лишь в процессе передачи. Большинство животных выделяют вирусы с экскретами, секретами, кровью, истечениями, мокротой. При большинстве вирусных инфекций в основе патогенеза лежит вирусемия (ящур, чума и др). При этих заболеваниях вирус выделяется всеми возможными путями. При хроническом течении вирусовыделение менее интенсивно, но может быть длительным. При вирусных заболеваниях локализация ограничивается одним путем: пневмонии – с каплями мокроты. Самое интенсивное выделение вируса во внешнюю среду наблюдается в острый период заболевания, однако при ряде заболеваний и в инкубационный период. Бессимптомные инфекции протекают при вакцинировании живыми вакцинами.

ВОПРОС №13 «ПРАВИЛА ВЗЯТИЯ ПАТМАТЕРИАЛА ОТ БОЛЬНЫХ И ПАВШИХ ЖИВОТНЫХ ПРИ ПОДОЗРЕНИИ НА ВИРУСНЫЕ БОЛЕЗНИ. ТРАНСПОРТИРОВКА И ПОДГОТОВКА ЕГО ДЛЯ ВИРУСОЛОГИЧЕСКИХ ИССЛЕДОВАНИЙ.

Материал для исследований от заболевших, павших или вынужденно убитых животных следует брать как можно быстрее после появления четких признаков болезни или не позднее 2-3 часов после клинической смерти или убоя. Это связано с тем, что сразу после заболевания или в первые 1-2 дня значительно ослабевает барьерная роль кишечника, что наряду с повышенной проницаемостью кровеносных сосудов способствует диссеминации кишечной флоры. Кроме того, по мере продолжения и даже углубления инфекционного процесса количество вируса может уменьшаться в результате воздействия защитных механизмов организма. При взятии материала для выделения вируса следует исходить из патогенеза изучаемой инфекции (входные ворота, пути распространения вируса в организме, места его размножения и пути выделения). При респираторных инфекциях для выделения вирусов берут носоглоточные смывы, мазки из носа и глотки; при энтеровирусных – кал; при дермотропных – свежие поражения кожи. Материалов для выделения вируса могут служить различные экскреты и секреты, кусочки органов, кровь, лимфа. Кровь берут из яремной вены, у свиней – из кончика хвоста или уха. Смывы с конъюнктивы, со слизистой носа, с задней стенки глотки, прямой кишки и клоаки у птиц берут стерильными ватными тампонами и погружают их в пенициллиновые флаконы. При взятии материала из носоглотки можно пользоваться прибором, сконструированным Томасом и Скотом. Вытекающую изо рта слюну можно собрать прямо в пробирку. Мочу собирают при помощи катетера в стерильную посуду. Фекалии берут из прямой кишки шпателем или палочкой и помещают в стерильную пробирку. Везикулярную жидкость можно собирать шприцем или пастеровской пипеткой в стерильную пробирку. Стенки афт, корочки с поверхности кожи снимают пинцетом. После смерти животного важно как можно быстрее взять кусочки органов, т.к. при многих вирусных инфекциях наблюдается феномен посмертной аутостерилизации, в результате чего вирус м\б вообще не обнаружен или его количество окажется очень малым. Далее патматериал помещают в низкие температуры (сухой лед+спирт; снег+соль) или глицерин на ИХН. Патматериал должен быть снабжен надежной и четкой этикеткой. Нужно написать какой материал и от какого животного получен. На термос с пробами ПМ навешивают бирку из картона или фанеры на которой указывают хозяйство, вид животного, вид материала, дату. Термос должен быть опечатан и доставлен нарочным. Доставленные в лабораторию пробы рекомендуется немедленно использовать для выделения вируса. В лаборатории полученный патматериал освобождают от консерванта, оттаивают, отмывают от глицерина, взвешивают и измеряют. Часть берут на исследование, часть в холодильник. Подготовку органов и тканей проводят так: вирус высвобождают из клеток органов и тканей – материал тщательно измельчают и растирают в ступке со стерильным кварцевым песком. Из растертого материала обычно готовят 10% суспензию на Хенксе или фосфатном буфере. Суспензию центрифугируют при 1500-3000 об\мин, надосадочную жидкость отсасывают и освобождают от микрофлоры обрабатывая антибиотиками (пенициллин, нистатин). Проводят экспозицию суспензии с АБ не менее 30-60 минут при комнатной температуре, затем материал подвергают бактериологическому контролю путем посева на МПА, МПБ, МППБ, среду Сабуро. Суспензию хранят при минус 20- минус 70 С.

ВОПРОС №14 «МЕТОДЫ КОНСЕРВИРОВАНИЯ ВИРУСОВ И ИХ ПРАКТИЧЕСКОЕ ЗНАЧЕНИЕ».

Применяют следующие методы консервации вирусов:

1) при хранении вирусного материала (кусочки органов или тканей) часто используют глицерин (50%-ный раствор на ИХН), который обладает бактериостатическим действием и в то же время защищает вирусы. При этом можно хранить несколько месяцев при 4С.

2) чаще всего хранят вирусы в холодильниках, обеспечивающих температуру -20, -30, -70С. При этой температуре некоторые вирусы без добавки защитных веществ сравнительно быстро теряют инфекционность. Хорошее защитное действие при замораживании и хранении вирусов оказывает добавка: инактивированной сыворотки крови или обезжиренного молока или 0,5-1,5% желатина.

3) Быстрая заморозка до минус 196С жидким азотом. Вирусы, чувствительные к низким значениям рН, следует замораживать в жидкостях, не содержащих однозамещенных фосфатов.

4) Лиофилизация – высушивание в замороженном состояние в условиях вакуума – очень хороший способ консервирования. В лиофилизированном виде вирусы могут храниться несколько лет.

ВОПРОС №15 «ПРАВИЛА РАБОТЫ В ВИРУСОЛОГИЧЕСКОЙ ЛАБОРАТОРИИ. ТЕХНИКА БЕЗОПАСТНОСТИ ПРИ РАБОТЕ С ВИРУСОСОДЕРЖАЩИМ МАТЕРИАЛОМ».

Весь персонал лаборатории проходит инструктаж и обучение безопасным методам труда, обеспечивается спецодеждой, спецобувью, средствами санитарной защиты и защитными приспособлениями в соответствии с действующими нормами. Основные правила работы следующие: 1) вход в производственные помещения посторонних лиц, а также вход сотрудников в лабораторию без халата и сменной обуви категорически запрещен; 2) запрещено выходить за пределы лаборатории в халатах и спецобуви или надевать верхнюю одежду на халат, курить, есть и хранить в лаборатории продукты питания. В боксе работают в стерильном халате, маске, шапочке, при необходимости надевают резиновые перчатки и очки. Обязательно меняют обувь. 3) весь материал, поступающий в лабораторию на исследование, должен рассматриваться как инфицированный. С ним надо обращаться очень осторожно, при распаковке его банки следует обтирать снаружи дезинфицирующим раствором и ставить их на поднос или в кюветы. Рабочее место на столе покрывают несколькими слоями марли, увлажненной 5%-ным раствором хлорамина. При работе с пипетками пользуются резиновыми грушами. Пипетки, предметные и покровные стекла и другую посуду, бывшую в употреблении, обеззараживают, погружая в 5% хлорамин, фенол, лизол, серную кислоту. 4) по окончании работы рабочее место приводят в порядок и тщательно дезинфицируют. Вируссодержащий материал, необходимый для дальнейшей работы, ставят на хранение в холодильник и опечатывают. 5) руки тщательно промывают 5% хлорамином, перчатки снимают обеззараживают вторично, дезинфицируют и моют. При работе в вирусологической лаборатории сотрудники должны строго соблюдать методы и правила асептики и антисептики. Асептика – система мероприятий и приемов работы, предупреждающих попадание МО и вирусов из окружающей среды в организм человека, а также исследуемый материал. Она предусматривает использование стерильных инструментов и материалов, обработку рук сотрудников, соблюдение особых санитарно-гигиенических правил и приемов работы. Антисептика – комплекс мероприятий, направленных на уничтожение МО и вирусов, способных вызвать инфекционный процесс при попадании на поврежденные или интактные участки кожи и слизистых оболочек. В качестве антисептиков используют этиловый спирт (70%), спиртовой раствор йода, зеленка и другие. Дезинфекция – обеззараживание объектов окружающей среды путем уничтожения патогенных для человека и животных МО и вирусов физическими способами и с помощью химических веществ. Стерилизация – обеспложивание, полное уничтожение МО и вирусов в различных материалах. Ее проводят физическими и химическими методами.

ВОПРОС №16 «СХЕМА ЛАБОРАТОРНОЙ ДИАГНОСТИКИ ВИРУСНЫХ ИНФЕКЦИЙ».

Лабораторная диагностика – это система мер по обнаружению, индикации вируса. В нее входят: получение посланного патологического материла, исследование патологического материала методом быстрой диагностики, исследование длительными методами (ретроспективная диагностика, исследование парных сывороток в серореакциях).

Лабораторные исследования. I.Индикация вируса в патологическом материале. 1.Обнаружение – световая микроскопия крупных вирусов (Poxviridae), электронная микроскопия. 2.Обнаружение телец-включений. (тельца Бабеша-Шенегри при бешенстве) 3.Обнаружение вирусных антигенов: серологические реакции. 4.Обнаружение вирусных НК (ДНК-зонды и ПЦР – полимеразно-цепная реакция). 5.Обнаружение активной формы вируса путем биопробы (лабораторные животные, куриные эмбрионы, культура клеток). 6.Обнаружение гемаглютининов у гемаглютинирующих вирусов (в настоящее время практически не используется по причине наличия более точных методов). II.Изоляция (выделение) вируса из патологического материала. Проводится не менее трех слепых пассажей, делается биопроба. А)Лабораторные животные (клиника, гибель, пат. изменения) Б)Куриные эмбрионы (гибель, пат. изменения, РГА) В)Культура клеток (ЦПД, РГАд, метод бляшек) III.Идентификация выделенного вируса – серологические реакции. IV.Доказательство этиологической роли. Иногда требуется доказать этиологическую роль выделенного вируса. Для этого используют парные сыворотки крови в серологических реакциях. В качестве АГ используют выделенный вирус, а в качестве АТ – парные сыворотки. Повышение титра антител во второй сыворотке в 4 и более раз свидетельствует о этиологической роли выделенного вируса.

ВОПРОС №17 «КЛИНИКО-ЭПИЗООТОЛОГИЧЕСКАЯ ДИАГНОСТИКА ВИРУСНЫХ БОЛЕЗНЕЙ ЖИВОТНЫХ, СУЩНОСТЬ, ЗНАЧЕНИЕ».

Клинико-эпизоотологическая или до-лабораторная диагностика – проводится в хозяйствах и позволяет поставить лишь предварительный диагноз, проводится распознавание на основе сбора, сопоставления анализа о больных животных (клинические симптомы болезни, Патологоанатомические изменения в органах). Сбор эпизоотологических данных очень важен, позволяет получить данные о том, как протекает заболевание, сведения о хозяйствах. Если хозяйства неблагополучны, то это лишний раз подтверждает диагноз. Клинический осмотр ориентирует ветеринара только на несколько видов болезней. Основное значение все же у лабораторной диагностики.

ВОПРОС №18 «МЕТОДЫ ОБНАРУЖЕНИЯ ВИРУСА В ПАТМАТЕРИАЛЕ».

I.Индикация вируса в патологическом материале. 1.Обнаружение – световая микроскопия крупных вирусов (Poxviridae), электронная микроскопия. 2.Обнаружение телец-включений (тельца Бабеша-Шенегри при бешенстве) 3.Обнаружение вирусных антигенов: серологические реакции. 4.Обнаружение вирусных НК (ДНК-зонды и ПЦР – полимеразно-цепная реакция). 5.Обнаружение активной формы вируса путем биопробы (лабораторные животные, куриные эмбрионы, культура клеток). 6.Обнаружение гемаглютининов у гемаглютинирующих вирусов (в настоящее время практически не используется по причине наличия более точных методов). Для идентификация выделенного вируса – серологические реакции. 1.РИФ – реакция иммунофлюорисценции. АГ + АТ меченные флюорохромом. Дают контакт 30 минут при 37 С, затем производят тщательный отмыв в ИХН. Метод обнаружения – флюоресцентное свечение под микроскопом. 2.ИФА – иммуно-ферментный анализ. АГ + АТ с ферментом. Контакт, отмыв, затем добавляют субстрат, который при контакте с АТ-ферментным комплексом дает цветную реакцию. 3.РСК – реакция связывания комплемента. АГ + АТ + комплемент. Контакт. Затем добавляют гем-систему (гемолизин + эритроциты барана). Контакт. Если гемолиза не происходит, значит АГ и АТ связали комплемент. Задержка гемолиза – реакция положительная. Если произошел гемолиз, значит комплемент связан гем-системой – реакция отрицательная. 4.РДП – реакция диффузной преципитиции. АГ + АТ (диффузия в агаровом геле). Метод обнаружения – образование контура преципитации. 5.РНГА – реакция непрямой гемаглютинации. Эритроциты нагружают АГ и при образовании комплекса АГ-АТ происходит агглютинация эритроцитов. 6.РТГА – реакция торможения гамаглютинации 7.РТГАд – реакция торможения гемадсорбции 8.РН – реакция нейтрализации. Вирус + АТ. Контакт. Ввод в чувствительную к вирусу систему. Метод обнаружения – нейтрализация инфекционной активности вируса.

ВОПРОС №19 «ПРИНЦИП РЕТРОСПЕКТИВНОЙ ДИАГНОСТИКИ, ПЛЮСЫ И МИНУСЫ ЕЕ».

Ретроспективная диагностика – преследует цель обнаружить динамику прироста АТ, основана на исследовании парных сывороток, которые берут дважды, в начале болезни и в конце. Их проверяют в одной из серореакций. Если прирост АТ в 4-5 раз больше – 100% постановка диагноза.

Роль – метод позволяет достоверно поставить диагноз в большинстве случаев.

Роль – длительность ретроспективной диагностики.

ВОПРОС №20 «ВИРУС БОЛЕЗНИ АУЕСКИ».

Болезнь Ауески (псевдобешенство, зудящая чума, бешеная чесотка, инфекционный бульбарный паралич) – остро протекающая болезнь всех видов сельскохозяйственных животных, пушных зверей и грызунов. Характеризуется признаками поражения головного и спинного мозга, сильным зудом и расчесами.

Особый ущерб БА приносит в свиноводстве и пушном звероводстве. У пушных зверей это острая кормовая инфекция. Причиной является пища, которой нередко служат боенские отходы и субпродукты, полученные от больных животных или животных вирусоносителей.

Клиника. Инкубационный период – 1,5 суток – 10-12 дней в зависимости от метода заражения, вирулентности вируса и устойчивости животного. Вирус пантропен.

У свиней клиника протекает без признаков зуда. Тяжело болеют сосуны и отъемыши. Болезнь носит септический характер. Поросята обычно погибают через 4-12 часов. У поросят от 10 дней до 3-х месяцев первые признаки болезни – лихорадка (40-42), угнетение, слизистые истечения из носа. Позднее появляются признаки поражения ЦНС: беспокойство, манежные движения, потеря ориентации, судороги, прогиб спины, параличи глотки, гортани, конечностей, отек легких, слюнотечение. Болезнь длится от нескольких часов до 3-х дней. Летальность: 70-100%

У свиноматок проявляется в виде гриппоподобного синдрома с выздоровлением через 3-4 дня.

У КРС повышается температура до 42 С, прекращается жвачка, сильный зуд в областе ноздрей, губ, щек, отказ от корма, вялость, беспокойство, страх, учащенное дыхание, потливость, судороги жевательных и шейных мышц. Смерть наступает при нарастающей вялости через 1-2 суток. Выздоровления крайне редки.

У плотоядных животных наблюдается отказ от корма, пугливость, беспокойство, сильный зуд. Иногда у собак и кошек проявляются признаки бешенства. Потом наступает паралич глотки. Смерть через 2-3 суток. Животные не являются источником вируса и не выделяют его, являясь экологическим тупиком.

Заподозрить болезнь Ауески можно по характерным клиническим симптомам и патологоанатомическим изменениям (клинико-эпизоотологическая и патологоанатомическая диагностика).

Материал для исследования: смывы из носовой полости и кровь (лучше парные сыворотки), от трупов – кусочки головного мозга, легких, печени, селезенки.

Экспресс-метод – обнаружение вирусного антигена в РИФ. Вирусологический метод: а) выделение вируса на культуре клеток почек поросят: б) биопроба на кроликах (характерны зуд и расчесы в месте заражения).

Идентификация: РИФ, РН.

Ретроспективная диагностика: по приросту титра антител в парных выворотках.

Следует дифференцировать болезнь Ауески от бешенства, чумы свиней, гриппа, рожи, отравления поваренной солью.

Применятся живая вирусвакцина ВГНКИ, инактивированная культурная вакцина – иммунитет на 6-10 месяцев.За рубежом используются субъединичные и рекомбинантные вакцины.

ВОПРОС №21 «ЗНАЧЕНИЕ И ОСОБЕННОСТИ ВИРУСНЫХ БЕЛКОВ».

Смотри вопрос №7

ВОПРОС №22 «ОБЩИЕ ПРИНЦИПЫ СЕРОЛОГИЧЕСКИХ РЕАКЦИЙ И ИХ ИСПОЛЬЗОВАНИЕ В ДИАГНОСТИКЕ ВИРУСНЫХ БОЛЕЗНЕЙ».

В целях определения вида данного вируса при изучении защитных процессов в организме больного человека или зараженного животного применяются серологические методы. Серология (от лат. Serum – сыворотка, жидкая составная часть крови) – это раздел иммунологии, изучающий реакции антигена специфическими защитными веществами, антителами, которые находятся в сыворотке крови. Антитела нейтрализуют действие вируса. Они связываются с определенными антигенными веществами, находящимися на поверхности вирусных частиц. В результате связывания молекул антител с поверхностной структурой вируса последний теряет свои патогенные свойства. Для установления уровня (количества) антител в сыворотке или определения типа данного вируса проводится реакция нейтрализации вируса. Ее можно проводить как на животных, так и на культуре клеток.

Минимальную концентрацию сыворотки, содержащей антитела, достаточную для того, чтобы нейтрализовать вирус, не дать ему проявить ЦПД, называют титром сыворотки, нейтрализующей вирус. Эта концентрация может быть выявлена и с помощью метода бляшек.

Для обнаружения антител используется метод торможения гемагглютинации (склеивания эритроцитов под воздействием вируса) и метод связывания комплемента. Из методов, применяемых в вирусологии для различных исследовательских целей, можно еще упомянуть методы, при помощи которых вирусологический материал подготавливается для физических и химических анализов, которые облегчают изучение тонкого строения и состава вирусов. Эти анализы требуют большого количества совершенно чистого вируса. Очистка вируса – процесс, при котором из суспензии с вирусом устраняются все посторонние, загрязняющие ее частицы. В основном это кусочки и «обломки» клеток – хозяев. Одновременно с очисткой происходит обычно сгущение суспензии, повышение концентрации вируса. Так получается исходный материал для многих исследований.

С помощью серологической реакции можно: определять титр АТ к гемагглютинирующему вирусу в сыворотке; идентифицировать неизвестный гемагглютинирующий вирус по известным сывороткам; установить степень АГ родства 2 вирусов, определять титр вируснейтрализующих АТ в сыворотке, или индекс нейтрализации, идентифицировать неизвестный вирус путем испытания его с различными заведомо известными сыворотками.

Серологические реакции.

1. РИФ – реакция иммунофлюорисценции.

АГ + АТ меченные флюорохромом. Дают контакт 30 минут при 37 С, затем производят тщательный отмыв в физрастворе. Метод обнаружения – флюоресцентное свечение под микроскопом.

2. ИФА – иммуно-ферментный анализ.

АГ + АТ с ферментом. Контакт, отмыв, затем добавляют субстрат, который при контакте с АТ-ферментным комплексом дает цветную реакцию.

3. РСК – реакция связывания комплемента.

АГ + АТ + комплемент. Контакт. Затем добавляют гем-систему (гемолизин + эритроциты барана). Контакт. Если гемолиза не происходит, значит АГ и АТ связали комплемент. Задержка гемолиза – реакция положительная. Если произошел гемолиз, значит комплемент связан гем-системой – реакция отрицательная.

4. РДП – реакция диффузной преципитиции.

АГ + АТ (диффузия в агаровом геле). Метод обнаружения – образование контура преципитации.

5. РНГА – реакция непрямой гемаглютинации.

Эритроциты нагружают АГ и при образовании комплекса АГ-АТ происходит агглютинация эритроцитов.

6. РТГА – реакция торможения гамаглютинации

7. РТГАд – реакция торможения гемадсорбции

8. РН – реакция нейтрализации.

Вирус + АТ. Контакт. Ввод в чувствительную к вирусу систему. Метод обнаружения – нейтрализация инфекционной активности вируса.

ВОПРОС №23, 25 «РТГА И ЕЕ ИСПОЛЬЗОВАНИЕ В ВИРУСОЛОГИИ. ДОСТОИНСТВА И НЕДОСТАТКИ».

Одной из простейших серологических реакции является реакция торможения гемаглютинации. Она основана на том, что АТ при встрече с гомологичным АГ нейтрализуют не только его инфекционную, но и гемагглютинирующую активность, т.к. блокируют рецепторы вирионов, ответственные за гемагглютинацию, образуя с ними комплекс «АГ+АТ». Принцип РТГА состоит в том, что в пробирке смешивают равные объемы сыворотки крови и суспензии вируса и после экспозиции определяют, сохранился ли в смеси вирус, путем добавления суспензии эритроцитов. Агглютинация эритроцитов указывает на наличие, а отсутствие гемагглютинации – на отсутствие вируса в смеси. Исчезновение вируса из смеси вирус + сыворотка расценивается как признак взаимодействия АТ сыворотки и вируса. РТГА позволяет решать следующие задачи: определять титр АТ к гемагглютинирующему вирусу в сыворотке; идентифицировать неизвестный гемагглютинирующий вирус по известным сывороткам; установить степень АГ родства двух вирусов. Достоинства РТГА: простота техники, быстрота, не требуется стерильной работы, специфичность, дешевизна. Недостаток РТГА: возможна только с гемагглютинирующими вирусами.

Принцип титрования АТ в РТГА состоит в следующем: готовят ряд последовательных (обычно 2-х кратных) разведений исследуемой сыворотки в одинаковых объемах (чаще по 0,25 или 0,2 мл); к каждому разведению добавляют такие же объемы гомологичного вируса в титре 4 ГАЕ; смеси выдерживают определенное время при определенной температуре, ко всем смесям добавляют равные объемы 1-% суспензии отмытых эритроцитов; после экспозиции оценивают гемагглютинацию в каждой смеси в крестах.

ВОПРОС №26 «РДП. ИММУНОЛОГИЧЕСКАЯ ОСНОВА МЕОДА, ПОСТАНОВКА И УЧЕТ РЕЗУЛЬТАТОВ. ДОСТОИНСТВА И НЕДОСТАТКИ».

РДП в геле основана на способности к диффузии в гелях АТ и растворимых АГ и отсутствие такой способности у комплекса «АГ+АТ». Этот комплекс образуется при контакте диффундирующих навстречу друг другу гомологичных АГ и АТ. Он осаждается на месте образования в толще геля в виде полосы преципитации. В качестве геля используют крахмал, желатин, агар-агар и другое. В лабораторной практике очень часто используют агаровый гель. АТ сыворотки представляют собой молекулы Ig, которые, несмотря на довольно крупные размеры. Способны диффундировать в агаровом геле. АГ вирусов – это вирусные белки. Они могут находится в составе вирионов, представляя так называемые корпускулярные АГ. Крупные размеры которые не позволяют им диффундировать в агаровом геле. Но белки вирусов могут быть и в виде свободных молекул, образующихся в результате деструкции вирионов и (или) разрушения клеток, в которых они образовались. Это растворимые АГ. Они способны к диффузии в агаровом геле. Методика постановки РДП в геле состоит в том, что в слое агарового геля делают несколько углублении и в них наливают АГ и сыворотки так. Чтобы АГ и сыворотка были в соседних лунках. Из лунок АГ и сыворотки начинают диффундировать в слой геля. Диффузия направлена во все стороны от каждой лунки. В пространстве между лунками, содержащими АГ и сыворотку, последние диффундируют навстречу друг другу. Если они окажутся гомологичными, то образуется комплекс «АГ+АТ», который к диффузии не способен вследствие более крупных размеров. Он оседает на месте образования в виде беловатой полосы преципитации. РДП решает задачи: 1) обнаружение в сыворотке крови АТ, гомологичных АГ; 2) обнаружение в материале АГ, гомологичного известным АТ сыворотки;3) идентификация неизвестного вируса; 4) титрование АТ сыворотки. Здесь высшее разведение сыворотки, еще дающее преципитацию с гомологичным АГ, служит показателем титра АТ в сыворотке. РДП часто используют для диагностики лейкоза КРС и инфекционной анемии лошадей. Реакция м\б поставлена в чашках Петри, на предметных стеклах, капиллярах (редко). Для осуществления РДП на предметных стеклах нужны: обезжиренные предметные стекла, градуированные пипетки (2-5 мл), пастеровские пипетки; трубка диаметром 5мм или штамп, влажная камера, инструмент для извлечения из лунок геля, агар, АГ, сыворотки. Постановка РДП: Предметные стекла кладут на холодную поверхность. Из пипетки наливают агар (слой 1,5-2 мм), дают остыть 5-10 минут. Вырезают лунки, запаивают их. В лунки заливают компоненты РДП, помещают во влажную камеру (где оставляют при комнатной температуре или ставят в термостат). Препарат РДП на предметных стеклах можно через 48-72 часа высушить и окрасить раствором амидного черного. Это позволяет сохранить препарат неопределенно долго и улучшает возможность фотографировать полосы преципитации. Плюсы РДП: простота техники постановки, быстрота получения ответа, нетребовательность к чистоте компонентов, не требуется стерильной работы, минимальная потребность в компонентах, пригодность для работы с любыми растворимыми АГ, возможность документирования результата путем фотографирования. Минусы РДП: низкая чувствительность. Реакцию ставят для обнаружения в патматериале вирусов бешенства, инфекционного ринотрахеита КРС, африканской чумы свиней, чумы собак, других; А также для идентификации вирусов инфекционной анемии лошадей, аденовирусов, респираторно-синцитиального вируса, вируса диареи КРС, для обнаружения в сыворотках крови АТ к вирусам инфекционной анемии лошадей, респираторно-синцитиального вируса КРС и во многих других случаях.

ВОПРОС №27 «РСК. ИММУНОЛОГИЧЕСКАЯ ОСНОВА И ХАРАКТЕРИСТИКА КОМПОНЕНТОВ РЕАКЦИИ».

Реакция связывания комплемента (РСК) - одна из традиционных серологических реакций, применяемых для диагностики многих вирусных болезней. Само название в значительной мере отражает суть метода, состоящего из двух отдельных этапов. На первом этапе участвуют антиген и антитело (один из этих ингредиентов заранее известен), а также определенное количество предварительно оттитрованного комплемента. При соответствии антигена и антитела их комплекс связывает комплемент, что выявляют на втором этапе с помощью индикаторной системы (смесь бараньих эритроцитов и антисыворотки к ним - гемолизина). Если комплемент связался при взаимодействии антигена и антитела, то лизиса эритроцитов не происходит (положительная РСК). При отрицательной РСК несвязанный комплемент способствует гемолизу эритроцитов (рис. 80).

РСК часто используют в диагностической практике для обнаружения и идентификации вирусов, обнаружения и титрования антител в сыворотках крови.

Основными компонентами РСК служат антигены (известные или выявляемые), антитела (известные антисыворотки или исследуемые сыворотки), комплемент, гемолитическая сыворотка и эритроциты барана; в качестве разбавителя используют изотонический раствор хлорида натрия (рН 7,2-7,4) или различные буферные растворы. Антигены и сыворотки могут обладать антикомплементарностью, т. е. способностью адсорбировать комплемент, что задерживает гемолиз и искажает результаты реакции. Чтобы избавиться от антикомплементарности, антигены очищают различными методами: ацетоном, фреоном, эфиром, хлороформом и т. д. в зависимости от вида ткани, используемой в качестве антигена и вируса. Сыворотки освобождают от антикомплементарности путем прогревания, обработкой комплемента и другими методами.

Антигены для РСК готовят из органов зараженных животных, из аллантоисной или амниотической жидкости зараженных куриных эмбрионов, а также из жидкой среды инфицированных культур клеток.

значительно отличается от его подготовки при бактериальных инфекциях. Это обусловлено рядом специфических свойств вирусов.

Во-первых, для освобождения вирусного антигена из клетки приходится часто дополнительно обрабатывать инфекционный материал с целью разрушения клеток и освобождения антигена.

Во-вторых, большой термолабильностью вирусных антигенов по сравнению с бактериальными. У большинства вирусов комплементфиксирующий антиген связан с инфекционной частицей, и разрушение его идет параллельно с потерей инфекционное™. Поэтому материалы для получения антигена необходимо брать от павших животных только в первые часы после гибели их, а лучше при жизни. Консервирование вируссодержащего материала различными дезинфицирующими средствами часто не дает положительных результатов, так как многие из них вызывают разрушение вирусного антигена.

В-третьих, неравномерностью фиксации комплемента при различном ношениях их; при избытке антител фиксация комплемента резко снижается, так как активный комплекс антиген + антитело представлен в основном в форме антител и активная поверхность комплемента незначительна. То же самое наблюдается и в зоне избытка антигена, где подавление фиксации комплемента происходит еще быстрее. Поэтому для установления оптимальной зоны фиксации комплемента необходимо предварительное титрование антигена и антител.

В-четвертых, незначительным объемом комплекса антиген + антитело. Размер вирусных частиц, вступающих в комплекс, очень ничтожен, и поэтому площадь фиксации комплемента незначительна. С увеличением объема комплекса антиген + антитело путем удлинения периода фиксации комплемента (до 18ч при 4 °С) повышается чувствительность реакции, но снижается ее специфичность, так как при продолжительном периоде фиксации увеличивается фиксация комплемента неспецифическими антигенами (тканевыми).

И наконец, в-пятых, высокой прокомплементарной активностью вирусного антигена. Для исключения неспецифической фиксации комплемента необходима более полная очистка вирусного антигена от тканевых фрагментов.

Большой помехой для использования РСК в диагностике вирусных болезней животных и человека является неравномерное накопление вирусного антигена в различные периоды болезни и особенно при разных инфекциях.

РСК применяют для определения типов и подтипов (вариантов) вируса ящура, вызывающих заболевание животных, для проверки производственных штаммов вируса ящура при изготовлении вакцин и лабораторных штаммов в научно-исследовательской работе.

ВОПРОС №28 «ТИТР ВИРУСОВ И ПРИНЦИПЫ ЕГО ОПРЕДЕЛЕНИЯ В ЕДИНИЦАХ 50%-ОГО ИНФЕКЦИОННОГО ДЕЙСТВИЯ».

Титр – это количество вируса, содержащегося в единице объема материала. Из локальных повреждений, вызываемых вирусами, наиболее известны бляшки и оспины на ХАО КЭ. Если имеются данные обратные то инфекционная активность вируса может быть измерена в бляшкообразующих единицах (БОЕ) или оспообразующих единицах (ООЕ) 1БОЕ = дозе вируса, способной вызвать образование одной бляшки, а одна ООЕ – одной оспины. Методы: заражают несколько КК или КЭ на ХАО. Высчитывают среднеарифметическое количество оспин или бляшек. Оно = БОЕ или ООЕ вируса. Рассчитывают сколько БОЕ или ООЕ приходится на единицу объема вируссодержащего материала. Это и есть титр. Т=n/Va, где n-сред арифметическое бляшек или оспин, а –разведение материала, V – введенная доза. Метод 50%-ного инфекционного действия. За единицу количества вируса принимается доза, которая способна вызвать инфекционный эффект у 50% зараженных. Число таких доз в единице материала и будет выражать титр вируса в этом материале. Готовят 10 кратное разведение исследуемого материала, затем одинаковыми дозами заражают равные группы живых тест объектов. Учитывают результат действия и находят в каком разведение вирус проявил свое действие на 50%. Если сразу такое разведение не найдено то оно рассчитывается по формуле Т=lgB – (b-50)/(b-a) *lgd, где В – разведение дающие инфекционный эффект более 50%, b – процент дающий инфекционный эффект более 50%, а – менее 50% d – кратность разведения. За 1ГАЕ принимается такая доза вируса, которая способна агглютинировать примерно 50% эритроцитов содержащихся в том же, что и вирус объеме 1% суспензии отмытых эритроцитов. Готовят ряд последовательных кратных разведений материала и к каждому разведению добавляют 1% суспензию. Реакция оценивается в крестах. Реакция с 2 крестами содержит 1ГАЕ, которая умножается на кратность разведения.

ВОПРОС №29 «БИОЛОГИЧЕСКАЯ ХАРАКТЕРИСТИКА ВИРУСА ЯЩУРА. ПРИНЦИП ДИАГНОСТИКИ»

Ящур – остро протекающая высококонтагиозная болезнь парнокопытных, проявляющаяся лихорадкой, везикулярным поражением слизистых оболочек рта, кожи венчика и вымени, у молодых животных поражением слизистых оболочек рта, кожи венчика и вымени, у молодых животных поражением миокарда и скелетных мышц. Ящур регистрируется во многих странах мира. Инкубационный период продолжается 1-3 дня. Иногда до 7-10 дней. Самый характерный признак данного заболевания у животных – везикулярное поражение слизистых оболочек рта и кожи венчика и вымени. У КРС – протекает остро, доброкачественно у взрослых. Вначале отмечают ухудшение аппетита, повышенную саливацию, повышение температуры тела. На 2-3 день на внутренней поверхности губ и языке (у некоторых в области межкопытной щели, на вымени) появляются афты. Через сутки образуются эрозии. Через 2-3 недели эрозии заживают и животное выздоравливает. Вирус относится к семейству Picornaviridae, роду Aphthovirus, РНК – содержащий, не имеет суперкапсидной оболочки. Вирионы – мелкие частицы икосаэдрической формы. Вирус довольно устойчив к действиям внешней среды. Восприимчивы домашние и дикие парнокопытные. Выделять вирус можно уже в инкубационный период. Переболевание может сопровождаться длительным вирусоносительством. Около 50% выздоровевшего КРС могут выделять вирус в течение 8 месяцев, а некоторые до 2 лет. Вирус культивируется на естественно восприимчивых и лабораторных животных: новорожденных мышатах, крольчатах морских свинках. Хорошо размножается в КК почек. Гемагглютинирующими свойствами не обладает. Известно 7 АГ-нных типов ящура: А, О, С, Сат-1, Сат-2, Сат-3, Азия-1. В организме естественно восприимчивых животных вирус индуцирует образование вируснейтрализующих, комплементсвязывающих и преципитирующих АТ.

Вирус ящура обычно определяют в РСК. Основными компонентами РСК служат АГ, АТ, комплемент, гемолитическая сыворотка и эритроциты барана; в качестве разбавителя используют ИХН или различные буферные растворы. АГ и сыворотки могут обладать антикомплементраностью – способностью адсорбировать комплемент, что задерживает гемолиз и искажает результаты реакции. Чтобы избавиться от антикомплементраности, АГ очищают различными методами: ацетоном, фреоном, эфиром, хлороформом в зависимости от вида ткани, используемой в качестве АГ и вируса. АГ для РСК готовят из органов зараженных животных, из аллантоисной и амниотической жидкости зараженных КЭ, а также из жидкой среды инфицированных КК. РСК применяют для определения типов и подтипов вируса ящура, вызывающих заболевание животных, для проверки производственных штаммов вируса ящура при изготовлении вакцин и лабораторных штаммов в научно-исследовательской работе.

ВОПРОС №30 «ЛЮМИНИСЦЕНТНАЯ МИКРОСКОПИЯ. ОСНОВЫ ИММУНОФЛЮОРЕСЦЕНЦИИ».

В основе метода лежит явление люминесценции, сущность которого в том, что поглощая различные виды энергии (световую, электрическую) атомы некоторых веществ переходят в возбужденное состояние, а затем, возвращаясь в исходное состояние, выделяют поглощенную энергию в виде светового излучения. Люминесценция наблюдается в виде флуоресценции – свечение, возникающее в момент облучения возбуждающим светом и прекращающееся сразу после его окончания. Фосфоресценция – свечение продолжающееся длительное время и по окончании процесса возбуждения.

ВОПРОС № 31 «ВИРУС БЕШЕНСТВА, ЕГО СВОЙСТВА. ПАТОГЕННОСТЬ. ПРИНЦИПЫ ДИАГНОСТИКИ».

Бешенство – острая инфекционная болезнь, протекающая с тяжелым поражением НС, как правило, с летальным исходом. Восприимчивы человек и все млекопитающие животные. Бешенство распространено повсеместно. Возбудителя передают собаки, кошки, дикие грызуны и хищники, а также кровососущие летучие мыши-вампиры. Продолжительность инкубационного периода зависит от места, силы укуса, количества и вирулентности попавшего в рану вируса, резистентности покусанного животного. Инкубационный период длится от 1-3 недель до года и более. Болезнь протекает остро. Клинические признаки при атипичном течение – потеря аппетита, атония рубца, паралич глотки, слюнотечение. Также может быть буйное и тихое течение болезни. Вирус бешенства (ВБ) обладает выраженной нейропробазией. Проникая с периферии по нервным стволам в центральную НС центростремительно, он распространяется в организме центробежно по периферическим нервам и попадает в разные органы, включая слюнные железы.

Вирус относится к семейству Rhabdoviridae, роду Lyssavirus. Вирионы имеют форму стержня с обрубленным концом. Вирион вируса – РНК-содержащий со спиральным типом симметрии, имеет липопротеидную оболочку. Низкие температуры консервируют вирус. Вирион ВБ содержит гликопротеидный и нуклеокапсидный АГ. Первый индуцирует образование вируснейтрализующих АТ, а второй – комплементсвязывающих и преципитирующих АТ. В организме вирус локализуется главным образом в ЦНС, в слюнных железах, слюне. Культивируется на мышах, кроликах, морских свинках, в первичных культурах клеток. Размножение вируса в КК не всегда проявляется ЦПД. Источников инфекции являются больные животные. Они передают вирус во время укуса. Диагноз на бешенство ставят на основании эпизоотологических, клинических данных и результатов лабораторных исследований, имеющих решающее значение. Для исследования направляют в лабораторию свежие трупы мелких животных целиком, а от крупных и средних животных – голову с 2 шейными позвонками. Трупы мелких животных перед отправкой на исследование обрабатывают инсектицидами. Лабораторная диагностика включает: обнаружение вирусного АГ в РИФ и РДП, телец Бабеша-Негри и биопробы на белых мышатах. РИФ – для данной реакции биопромышленность выпускает флуоресцирующий антирабический гамма-глобулин. Принцип – 1)Делают отпечатки или мазки из различных отделов ГМ левой и правой стороны на предметных стеклах (не менее 2 препаратов из каждого отдела); 2)Их высушивают, фиксируют в охлажденном ацетоне; 3)Высушивают, наносят флуоресцирующий гамма-глобулин; 4)Помещают во влажную камеру; 5)Тщательно промываю ИХН, споласкивают водой, высушивают на воздухе, наносят нефлуоресцирующее иммерсионное масло и просматривают под люминесцентным микроскопом. В препаратах, содержащих АГ ВБ, наблюдаются разной величины и формы флуоресцирующие желто-зеленым цветом гранулы в нейронах, но чаще вне клеток. РДП – 1)Наливают на предметные стекла агаровый гель 2)Делают лунки (Д=4-5 мм); 3)Лунки заполняют пастообразной массой из отделов ГМ. 4)Контроли с «+» и «-« АГ ставят на отдельном стекле по тому же трафарету; 5)После заполнения лунок препараты помещают во влажную камеру и ставят в термостат при 37С на 6 часов, затем при комнатной температуре на 18 часов. Реакцию считают положительной при появлении одной или 2-3 линий преципитации любой интенсивности между лунками, содержащими суспензию мозга и антирабический гамма-глобулин. ВЫЯВЛЕНИЕ ТЕЛЕЦ – на предметных стеклах делают тонкие мазки или отпечатки из всех отделов ГМ и окрашивают по Селлерсу или Муромцеву или Манну или Ленцу. БИОПРОБА – отбирают белых мышей (16-20 грамм), нервную ткань из всех отделов ГМ растирают в ступке со стерильным песком, добавляют ИХН до 10-% суспензии, отстаивают 30-40 минут и для заражения используют надосадочную жидкость для заражения мышат. Заражают 10-12 шт: половину интрацеребрально по 0,03 мл, половину подкожно в область носика или в верхнюю губу по 0,1-0,2 мл. Наблюдают 30 дней. При наличии ВБ в патматериале с 7-10 дня после заражения у мышей наблюдают симптомы: взъерошенность шерсти, своеобразную горбатость спины, нарушение координации движений, паралич задних, затем передних конечностей и гибель. У павших мышей ГМ исследуют в РИФ на обнаружение телец Бабеша-Негри и ставят РДП. Биопробу на бешенство считают положительно, если в препаратах из мозга зараженных мышат обнаруживают тельца Бабеша-Негри или выявляют АГ методами РИФ или РДП. Отрицательный диагноз – отсутствие гибели мышат в течение 30 дней.

ВОПРОС №32 «СОВРЕМЕННАЯ КЛАССИФИКАЦИЯ ИММУНИТЕТА. СТРУКТУРА АТ ХАРАКТЕРИСТИКА РАЗЛИЧНЫХ КЛАССОВ ИММУНОГЛОБУЛИНОВ И ИХ СТРОЕНИЕ».

Иммунитет – состояние невосприимчивости организма к воздействию патогенных микробов, их токсинов и других чужеродных веществ биологической природы.

Иммунная система организма – система органов и клеток, осуществляющая реагирование против чужеродных субстанции.

Врожденный иммунитет – невосприимчивость к инфекционным агентам, расположенная в геноме и проявляемая количеством и порядком расположения ганглиозидов определенного типа на поверхности мембран клеток. Он весьма прочный, но не абсолютный.

Приобретенный иммунитет – устойчивость организма только к определенному возбудителю болезни. Этот иммунитет подразделяют на естественный и искусственный. Естественный делят на 1.активный – образуется после естественного переболевания животного, иногда после попадания многоразовых малых доз возбудителя (иммунизирующая субинфекция). 2.пассивный – иммунитет новорожденных, приобретенный за счет поступления плоду от матери антител через плаценту или после рождения через кишечник с молозивом. Различают естественный и искусственный колостральный иммунитет, в первом случае иммунитет возникает из-за антител, естественно выработанных в организме матери под воздействием различных антигенов окружающей среды. Во втором случае путем направленной иммунизации организма матери. Естественно приобретенный активный иммунитет может сохраняться 2 года, иногда пожизненно, искусственно приобретенный может обеспечивать состояние невосприимчивости от нескольких недель до нескольких месяцев.

Искусственно приобретенный иммунитет подразделяют еще и на 1.активный – возникает в результате иммунизации животных вакцинами (развивается через 7-14 дней и сохраняется до нескольких месяцев до 1 года и больше) и пассивный – создается при введении в организм иммунной сыворотки, содержащей специфические антитела против определенного возбудителя болезни.

Различают также виды иммунитетов: 1.Антибактериальный иммунитет – защитные механизмы направлены против патогенного микроба. 2.Противовирусный – организм вырабатывает противовирусные антитела. 3.Антитоксический иммунитет – при образовании которого бактерии не разрушаются, но вырабатываются антитела, эффективно нейтрализующие токсины в организме больного.

4.Местный иммунитет. 5.Стерильный иммунитет – если после перенесенной болезни организм освобождается от возбудителя, сохраняя при этом состояние невосприимчивости. 6.Нестирильный – когда иммунитет сохраняется только пока в организме находится возбудитель болезни. 7.Гуморальный иммунитет – выработка в зараженном организме специфических антител. 8.Клеточный – обеспечивается за счет образования специфически реагирующих с возбудителем Т-лимфоцитов.

Неспецифические факторы защиты организма.

Они выступают в качестве первого защитного барьера, не нуждаются в перестройке.

Кожа – мощный барьер для проникновения микроорганизмов, при этом имеют значение механические факторы.

Слизистые оболочки – в дыхательных путях с помощью мерцательного эпителия (передвигает пленку слизи вместе с микроорганизмами по направлению к естественным отверстиям), во рту к носовым ходам (кашель и чихание). Эти оболочки выделяют секреты, обладающие бактерицидными свойствами, в частности за счет лизоцима и IgA. Секреты пищеварительного тракта обладают способностью обезвреживать многие патогенные микробы. Слюна содержит лизоцим, амилазу, фосфатазу. Желчь вызывает гибель пастерелл. В слизистой кишечника мощные антимикробные факторы.

Лимфатические узлы – в них развивается воспаление, в его зоне происходит фиксация микробов нитями фибрина. В воспаление участвуют система комплемента, эндогенные медиаторы.

Фагоцитоз – процесс активного поглощения клетками организма попадающих в него патогенных живых или убитых микробов и других чужеродных частиц с последующим перевариванием с помощью ферментов.

АТ могут существовать в миллионах разновидностей – каждая со своим уникальным участком для связывания АГ. В совокупности называемые иммуноглобулином (Ig), АТ-белки образуют один из основных классов белков крови, составляя по массе примерно 20% суммарного белка плазмы. Когда АГ присоединяется к мембранным антигенспецифическим рецепторам В-клетки, наступает клеточная пролиферация и дифференцировка с образованием клеток, секретирующих АТ. АТ имеют 2 идентичных АГ-связывающих участка. Простейшие молекулы АТ схематически имеют форму буквы гамма с двумя идентичными АГ-связывающими участками – по одному на конце каждой из двух «ветвей». Поскольку таких участков 2, эти АТ называют бивалентными. Защитное действие АТ объясняется не просто их способностью связывать АГ. Они выполняют и целый ряд других функций, в которых участвует «хвост», называются эффекторными функциями и обусловлены не участием в них «хвоста», а структурой Fc-фрагмента. Эта область молекулы определяет, что произойдет с АГ, если он оказался связанным. Антитела с одинаковыми АГ-связывающими участками могут иметь весьма разные «хвостовые» области, а поэтому и разные функциональные свойства. Молекула Ig G,D,E и сывороточного IgA состоит из 4 полипептидных цепей – 2 легких и 2 тяжелых. У высших позвоночных существует 5 разных классов антител – IgA, IgD, IgE, IgG, IgM каждый со своим классом тяжелых цепей. IgG – АТ составляют основной класс Ig находящихся в крови. Они производятся в больших количествах при вторичном ответе, это единственные АТ, которые могут переходить от матери к плоду. Это преобладающий класс АТ, образуемых при большинстве вторичных иммунных ответов, на ранних стадиях первичного иммунного ответа в кровь поступают главным образом АТ IgM – они также первый класс АТ, продуцируемых развивающимися В-клетками. IgA – основной класс АТ в секретах молока, слюне слезах, секретах дыхательных путей и кишечного тракта. АТ защищают позвоночных от инфекций, инактивируя вирусы, мобилизуя комплемент и различные клетки, которые убивают и поглощают внедрившиеся МО.

ВОПРОС №33 «ОСОБЕННОСТИ ПРОТИВОВИРУСНОГО ИММУНИТЕТА».

1.Противовирусный иммунитет связан с своеобразными защитными механизмами, т.к. вирусы не способны развиваться и размножаться в неживой клетке. Защитное приспособление организма направлено на 2 формы существования вируса. На внеклеточный вирусные неспецифические и специфические факторы иммунитета, на внутриклеточную форму – процесс фагоцитоза. При вирусных инфекциях он всегда незавершенный, интерферон оказывает экзогенное действие на внеклеточную форму, вирусы теряют способность адсорбции, эндогенный интерферон синтезируется в клетках в ответ на вирусный АГ.

2.Средства и методы воздействия на вирусы может быть эффективными только на определенных стадиях существования вируса, что ярче всего проявляется при лечении больных иммунными препаратами, т.к. АТ не способны проникнуть внутрь клеток.

3.Противовирусный иммунитет является более продолжительным по сравнению с бактериальным, а при отдельных вирусных инфекциях он пожизненный (чума КРС, собак, катаральная лихорадка овец, оспа).

ВОПРОС №34 «РОЛЬ ЛИМФОИДНЫХ КЛЕТОК В ПРОТИВОВИРУСНОМ ИММУНИТЕТЕ (ХАРАКТЕРИСТИКА Т И В ЛИМФОЦИТОВ)».

Т-лимфоциты. Тимусзависимые лимфоциты образуются из стволовых клеток кроветворной ткани. Предшественники Т-лимфоцитов поступают в тимус, претерпевают в нем дифференцировку и выходят уже в виде клеток с различными функциями, несущих на себе характерные маркеры. Различают несколько субпопуляций Т-лимфоцитов в зависимости от биологических свойств.

Т-хелперы (помощники) относятся к категории регуляторных вспомогательных клеток. Стимулируют пролиферацию В-лимфоцитов и дифференцировку в антителообразующие клетки (плазматические клетки). Установлено, что ответ В-лимфоцитов на воздействие большинства белковых антигенов полностью зависит от помощи Т-хелперов, которая осуществляется двумя способами. В первом случае требуется прямое воздействие хелперной Т-клетки и реагирующей В-клетки. Полагают, что Т-клетка распознает детерминанты антигенной молекулы которая уже зафиксирована на В-клетке рецепторами клеток: Во втором случае хелперная функция Т-клеток в активации В-лимфоцитов может осуществляться также путем образования растворимых неспецифических хелперных факторов - лимфокинов (цитокинов).

Т-киллеры (убийцы) выполняют эффекторные функции, осуществляя клеточные формы иммунного ответа. Они распознают и лизируют клетки, на поверхности которых имеются чужеродные для данного организма антигены (опухолевые, вирусные и гистосовместимости). Пролиферация и диференцировка Т-киллеров происходит с участием Т-хелперов действие которых осуществляется в основном с помощью растворимых факторов, в частности интерлеикина. Установлено, Т-киллеры осуществляют реакцию гиперчувствительности замедленного типа.

Т-у с и л и т е л и активизируют иммунный ответ в рамках Т-подсистемы иммунитета, а Т-хелперы обеспечивают возможность его развития в В-звене иммунитета в ответ на тимусзависимые антигены.

Т-супрессоры (подавляющие) обеспечивают внутреннюю саморегуляцию системы иммунитета двумя способами: клетки супрессоры ограничивают иммунный ответ на антигены; предотвращают развитие аутоиммунных реакций. Т-сулрессоры тормозят выработку антител, развитие гиперчувствительности замедленного типа; формирование Т-киллеров обеспечивает становление поддержание иммунологической толерантности.

Т-клетки иммунной памяти обеспечивают иммунный ответ вторичного типа в случае повторного контакта организма с данным антигеном. На мембранах Т-клеток обнаружены антигенсвязывающие рецепторы и Fe-рецепторы, IgA или IgM. Нулевые лимфоциты не имеют отличительных марке ров Т – и В-лимфоцитов. Они способны осуществлять антитело зависимый, не требующий присутствия комплемента, лизис клеток-мишеней при наличии специфических против данных клеток антител. К-лимфоциты являются разновидностью нулевых лимфоцитов. Для них клетками-мишенями являются опухолевые клетки, измененные вирусами Т- и В-лимфоциты, моноциты, фибробласты, эритроциты.

В-лимфоциты. Как и Т-лимфоциты, образуются из стоволовых клеток кроветворной ткани. Предшественники В-лимфоцитов в сумке Фабрициуса претерпевают дифференцировку и затем мигрируют в лимфатические узлы и селезенку, где и выполняют свои специфические функции.

Установлено наличие двух классов В-клеток: В-эффекторы и В-регуляторы. Эффекторными клетками В-лимфоцитов являются антителообразующие клетки (плазматические), синтезирующие антитела одной специфичности, т. е. против одной антигенной детерминанты. В-регуляторы, в свою очередь, делятся на супрессоры и усилители (амплифайеры). Функция регуляторов заключается в выделении медиаторов, угнетающих продукцию ДНК в Т- и В-лимфоцитах только в пределах костного мозга, а также усиление В-эффекторов. В-лимфоциты крупнее Т-лимфоцитов (соответственно 8 и 5 мкм). Благодаря электронной микроскопии выяснено, что поверхность В-лимфоцитов покрыта многочисленными ворсинками и складчатая, а поверхность Т-лимфоцитов гладкая.

ВОПРОС №35 «РОЛЬ КЛЕТОЧНЫХ ФАКТОРОВ В ПРОТИВОВИРУСНОМ ИММУНТИТЕТЕ».

Отличается от гуморального тем, что эффекторными элементами клеточного иммунитета являются Т-лимфоциты, а гуморально – плазматические клетки. Он имеет особое значение при инфекциях, вызванных многими вирусами, бактериями, грибами.

Образование цитотоксических Т-клеток (ЦТК) – среди АГ клеточной поверхности, способные вызывать образование ЦТК – продукты МНС (мононуклеарная система), вирусы, опухолеспецифические АГ. ЦТК имеют рецепторы, с помощью которых происходит связывание АГ и запускаются процессы запускающие лизис клетки. Литическая активность Т-клеток начинается с тесного взаимодействия между киллерной клеткой и клеткой-мишенью, происходит изменение мембранной проницаемости клетки-мишени, заканчивающееся разрывом клеточной мембраны.

Способность непосредственно лизировать широкий набор клеток-мишеней, в особенности опухолевых, обладают ПК – они могут лизировать клетки независимо от продуктов МНС (интерферон и ИЛ-2 усиливают литическую активность ПК).

ГЗТ – зависимая от Т-клеток иммунологическая реакция, проявляющаяся в виде воспаления в месте попадания в организм АГ, обычно в коже. Лимфоциты, способные переностить ГЗТ, являются Т-клетками и называются ТГЗТ-лимфоцитами (они могут активизироваться и реагировать на белковые АГ, аллоантигены, антигены опухолей, на АГ вирусов, бактерий, грибов, простейших.

Большую роль в клеточном иммунитете играю макрофаги. Когда возбудители размножаются внутри фагоцитов внутриклеточное уничтожение происходит лишь после того как макрофаги получают стимул от спецсенсибилизированных Т-лимфоцитов. Т-лимфоциты активируют макрофаги за счет выделения лимфокинов.

ВОПРОС №36 «РОЛЬ ГУМОРАЛЬНЫХ ФАКТОРОВ В ПРОТИВОВИРУСНОМ ИММУНИТЕТЕ»

Кроме АТ – специфического фактора противовирусного иммунитета – организм вырабатывает особые вирусотропные вещества – ингибиторы, способные взаимодействовать с вирусами и подавлять их активность. Сывороточные ингибиторы обладают широким диапазоном действия: одни подавляют гемагглютинирующие свойства вирусов, другие – их цитопатогенное действие, третьи – их инфекционную активность. Термолабильные ингибиторы содержатся в нормальных сыворотках человека и животных. Они обладают широким диапазоном вируснейтрализующего действия, способны блокировать гемагглютинирующую активность вирусов гриппа, нью-каслской болезни, кори, арбовирусов и других и нейтрализовать инфекционные и иммуногенные свойства ингибиторочувствительных вирусов. Термостабильные гамма-ингибиторы высокоактивны против современных вариантов вируса гриппа. Термостабильные альфа-ингибиторы блокируют гемагглютинирующую, но не инфекционную активность вируса.

ВОПРОС №37 «ПРОТИВОВИРУСНЫЕ АТ, ИХ СВОЙСТВА, БИОЛОГИЧЕСКАЯ РОЛЬ, МЕТОДЫ ОБНАРУЖЕНИЯ И ТИТРОВАНИЯ».

АТ – белки, образующиеся в организме на парентеральное введение высокомолекулярных веществ с признаками генетической чужеродности для данного организма. АТ способны вступать во взаимодействие с АГ в ответ на который оно образовалось и нейтрализовать его биологическую активность. Обычный источник АТ – сыворотка крови. При встрече с АГ АТ нейтрализует не только его инфекционную, но и гемагглютинирующую активность, т.к. блокирует рецепторы вирионов, ответственные за гемагглютинацию, в результате образуется комплекс «АГ+АТ».

АТ могут существовать в миллионах разновидностей – каждая со своим уникальным участком для связывания АГ. В совокупности называемые иммуноглобулином (Ig), АТ-белки образуют один из основных классов белков крови, составляя по массе примерно 20% суммарного белка плазмы. Когда АГ присоединяется к мембранным антигенспецифическим рецепторам В-клетки, наступает клеточная пролиферация и дифференцировка с образованием клеток, секретирующих АТ. АТ имеют 2 идентичных АГ-связывающих участка. Простейшие молекулы АТ схематически имеют форму буквы гамма с двумя идентичными АГ-связывающими участками – по одному на конце каждой из двух «ветвей». Поскольку таких участков 2, эти АТ называют бивалентными. Защитное действие АТ объясняется не просто их способностью связывать АГ. Они выполняют и целый ряд других функций, в которых участвует «хвост», называются эффекторными функциями и обусловлены не участием в них «хвоста», а структурой Fc-фрагмента. Эта область молекулы определяет, что произойдет с АГ, если он оказался связанным. Антитела с одинаковыми АГ-связывающими участками могут иметь весьма разные «хвостовые» области, а поэтому и разные функциональные свойства. Молекула Ig G,D,E и сывороточного IgA состоит из 4 полипептидных цепей – 2 легких и 2 тяжелых. У высших позвоночных существует 5 разных классов антител – IgA, IgD, IgE, IgG, IgM каждый со своим классом тяжелых цепей. IgG – АТ составляют основной класс Ig находящихся в крови. Они производятся в больших количествах при вторичном ответе, это единственные АТ, которые могут переходить от матери к плоду. Это преобладающий класс АТ, образуемых при большинстве вторичных иммунных ответов, на ранних стадиях первичного иммунного ответа в кровь поступают главным образом АТ IgM – они также первый класс АТ, продуцируемых развивающимися В-клетками. IgA – основной класс АТ в секретах молока, слюне слезах, секретах дыхательных путей и кишечного тракта. АТ защищают позвоночных от инфекций, инактивируя вирусы, мобилизуя комплемент и различные клетки, которые убивают и поглощают

внедрившиеся МО.

ВОПРОС №38 «ИНТЕРФЕРОН И ЕГО РОЛЬ В ПРОТИВОВИРУСНОМ ИММУНИТЕТЕ».

В клетках человека имеется 27 генетических локусов для интерферонов (далее И) – 14 функционирующие. И закодированы в генетическом аппарате клетки. Различают альфа, бета, гамма – И. Система его не имеет центрального органа, все клетки обладают способностью его синтезировать. Для его образования нужны индукторы (вирусы, бактериальные токсины, экстракты из бактерии и грибов, двуспиральные РНК (наиболее эффективны) и другие). Вирусинфецированный И – альфа и бета; гамма-И образуется под влиянием фитогемагглютинина с СЭА. При индукции И синтезируется 2 или более его типов. Наиболее активно индуцирующие вирусы – миксо-, арбовирусы. Интерфероногенность вирусов возрастает с понижением их вирулентности для организма. Индукторы не вирусной природы стимулируют более быстрое и кратковременное накопление в организме «тяжелого» И (с высокой молекулярной массой). И можно получить через 4 часа после внутривенного введения Ig. И не влияет на адсорбцию, виропексис, депротеинизацию вирионов, он подавляет продукцию вируса. Действует он не на какой-то определенный вирус, а вообще на многие виды. И способен усиливать фагоцитарную активность (макрофаги при воздействии на них И имеют значительно больше вакуолей, быстрее прикрепляются к стеклу, активнее захватывают бактерии). Препараты интерферона угнетают рост клеток, подавляет рост и опухолевых клеток. И угнетает АТ образование, оказывает прямое воздействие на В-лимфоциты. И способствует повышению киллерной активности Т- клеток. Предварительная обработка клеток или животных не большими дозами И приводит к повышению продукции И в ответ на последнюю индукцию его синтеза (прайминг). При обработке продуцентов И повышается количествами И наблюдается блокинг (противоположный эффект). На выработку И влияют внешние условия (погода, температура воздуха). Ионизирующие излучение понижает продукцию И. В процессе роста организма количество ингибиторов И понижается. И молодняка проявляет пониженной антивирусное действие по сравнению с И взрослого животного, потому что снижена продукция мононуклеарными фагоцитами. При образовании И в клетках новорожденных происходит активизация и выход из лизосом катепсина Д, что ведет к протеолитической деградации И. По мере роста уменьшаются компоненты, способствующие выходу катепсина Д из лизосом. Наиболее чувствительны к И вирусы имеющие внешнюю оболочку, содержащие липиды (миксовирусы, группа оспы, арбовирусы). Для медицинских и ветеринарных целей используют в основном индукторы эндогенного И, но и экзогенный И тоже используют. Подобно гормонам И-ны выделяются одними клетками и переносят через межклеточное пространство специфический сигнал на другие клетки. И – «белковый фактор», который не обладает вирус-специфичностью и антивирусная его активность осуществляется с участием клеточного метаболизма, вовлекающего синтез РНК, белка.

ВОПРОС №39 «ПРИНЦИП ПОЛУЧЕНИЯ БАКТЕРИОФАГОВ. ОПРЕДЕЛЕНИЕ АКТИВНОСТИ И ПРАКТИЧЕСКОЕ ИСПОЛЬЗОВАНИЕ ФАГОВ».

Фаг получают путем добавления в культуру МО специального фага выдержанного в течение суток при температуре 37 градусов, фильтруют через бактериальные фильтры, фильтрат проверяют на чистоту путем посева; безвредность и активность, титр фага.

Определение активности фага.

Используют качественные и количественные методы. Количество фага определяется титрованием на жидкой или плотной питательных средах. Для этого фаг разводят десятикратно. Каждому разведению добавляют одинаковое количество суточной бульонной культуры бактерий. Затем помещают в термостат, учитывают результат. Титр определяют после выделения смеси в 1 сутки в термостате.

За титр фага принимают наибольшее его разведение, которое способно задержать рост МО. Выражают степенью его разведения. Только вирулентные фаги обуславливают полное разрушение клетки, образование фаговых частиц.

ВОПРОС №40 «ПАССИВНАЯ СПЕЦИФИЧЕСКАЯ ПРОФИЛАКТИКА ВИРУСНЫХ БОЛЕЗЕНЙ. ПРИНЦИП ПОЛУЧЕНИЯ».

Препараты для пассивной ИП – для парентерального и перорального введения АТ или Ig. С целью проведения ИП применяют иммунные, гипериммунные сыворотки, реконвалесцентную и аллогенную сыворотки.

Реконвалесцентная сыворотка – сыворотка доноров переболевших или инфицированных животных. Ее используют, когда нет более эффективных средств в дозе 1мл\кг массы тела.

Гипериммунные сыворотки – сыворотки доноров, которые получают в результате однократного введения по определенной схеме массированных доз АГ. Подбирают здорового донора, не болевшего ранее этим заболеванием. Его вакцинируют и через 2-3 недели начинают вводить по определенной схеме в нарастающих дозах, доводят до пика нарастания АТ. Пик определяют путем постановки серологической реакцией на титр АТ (сыворотку проверяют на стерильность, активность и безвредность. Доза 2 мл\кг (лечебная), 1-1,5 мл\кг (профилактика). Вводят дробно. Сначала вводят сенсибилизированную дозу, а через 2-3 часа – разрешающую дозу, чтобы избежать анафилактического шока.

Аллогенная сыворотка – сборная сыворотка, которую получают от разных животных в условиях одного хозяйства. Она содержит большой набор АТ и различных АГ.

ВОПРОС №41 «СПЕЦИФИЧЕСКАЯ ПРОФИЛАКТИКА ВИРУСНЫХ БОЛЕЗНЕЙ. ВИДЫ ВАКЦИН И МЕТОДЫ ИХ ВВЕДЕНИЯ».

1.В практике эпизоотологии увеличение размеров и плотности поголовья животных возрастает риск появления эпизоотий. Главным принципом в борьбе с ними является разрыв инфекционной цепи во всех участках или прекращение перехода эпизоотического процесса в скрытое состояние. Одним из главных инструментов разрыва цепи является своевременная профилактика. Для животноводства, развивающееся на промышленной основе борьба со всеми факторами, в.т.ч. с патогенными МО и вирусами является одним из важнейших условий благополучного поголовья. ИП (иммунопрофилактика) при ее правильном включении в стратегию борьбы с инфекционными болезнями значительно уменьшает опасность.

Целью ИП являются не только искоренение инфекционных болезней, но и сохранение продуктивности, поэтому необходимо стремиться к созданию таких вакцин, которые способны обеспечить высокую степень защиты всего поголовья сразу после вакцинации, не зависимо от возраста животных.

ИП имеет ряд преимуществ:

1.Принцип действия ИП основан на специфическом изменении организма животного в сторону максимального снижения возможности для возбудителя вызвать инфекционное заболевание.

2.ИП действует непрерывно и долго, иногда всю жизнь.

3.ИП не только изменяет реактивность организма животного, но и повышает способность к иммунной защите у всего поголовья.

4.Действие ИП на эпизоотический процесс может быть точно рассчитано.

5.При соответствующем выборе моментов прививки ИП обеспечивают максимальную защиту в самые опасные для заражения периоды жизни.

6.ИП можно увязать с технологическим процессом в животноводстве.

7.Используемые для ИП препараты можно дозировать, применять в разных сочетаниях и стандартизировать.

8.В отличие от АБ и химических препаратов ИП не вызывает явления резистентности у МО.

9.ИП требует меньших экономических затрат, затрат сырья.

10. ИП не оказывает никакого влияния на качество продукции животных.

Отрицательные стороны:

1.Пероценка возможностей ИП. Владелец животного часто убежден, сто с проведением вакцинации уже все сделано для защиты, что приводит к ослаблению санитарно-гигиенических мер.

2.Слишком большое возрастание конечной стоимости продукции.

3.После прививочные реакции, которые в течение определенного времени снижает продуктивность, если используется недостаточно отработанная вакцина.

4.Слишком частое беспокойство животных, ведущее к снижению продуктивности.

5.Возникновение диагностических проблем и возрастание трудности в борьбе с заболеваниями, если вакцинные и патогенные штаммы в обычных условиях не различаются или различаются с большим трудом.

Нецелесообразное применение вакцин может принести вред, поэтому для каждой конкретной инфекционной болезни и эпизоотической ситуации надо продуманно выбрать вакцину и вариант ее применения с учетом экономических затрат и эффективности, чтобы обеспечить наивысший результат массовых прививок.

Иммунопрофилактика сложилась на основе давнего опыта человечества, согласно которому люди, перенесшие инфекционные заболевания вторично ими не заболевали. Раньше, когда в Афинах была чума человека. Фукидид сообщал, что больные оставались без помощи если бы за ними не ухаживали выздоравливающие люди. В Китае в 16 веке при оспе человека был обычай: вдыхать через нос высушенные растертые оспенные корочки. Дженер изобрел вакцину от оспы. Пастер предложил способ вакцинации против бешенства.

Профилактика вирусных болезней строится на тех же принципах, что и профилактика других инфекционных болезней:

1.Проведение организационных мероприятий.

3.Химиопрофилактика.

Специфическая профилактика вирусных болезней обеспечивается применением живых, инактивированных, поли- и моновалентных сывороток.

Классификация и характеристика иммунопрепаратов:

Биопрепараты – продукты биологического происхождения, используемые для активной и пассивной ИП.

Препараты для пассивной ИП – для парентерального и перорального введения АТ или Ig. С целью проведения ИП применяют иммунные, гипериммунные сыворотки, реконвалесцентную и аллогенную сыворотки.

Реконвалесцентная сыворотка – сыворотка доноров переболевших или инфицированных животных. Ее используют, когда нет более эффективных средств в дозе 1мл\кг массы тела.

Гипериммунные сыворотки – сыворотки доноров, которые получают в результате однократного введения по определенной схеме массированных доз АГ. Подбирают здорового донора, не болевшего ранее этим заболеванием. Его вакцинируют и через 2-3 недели начинают вводить по определенной схеме в нарастающих дозах, доводят до пика нарастания АТ. Пик определяют путем постановки серологической реакцией на титр АТ (сыворотку проверяют на стерильность, активность и безвредность. Доза 2 мл\кг (лечебная), 1-1,5 мл\кг (профилактика). Вводят дробно. Сначала вводят сенсибилизированную дозу, а через 2-3 часа – разрешающую дозу, чтобы избежать анафилактического шока.

Гамма-глобулины получают из гипериммунных сывороток путем освобождения от балластных белков. Их вводят п\к или в\м в дозе 0,5-2 мл\кг. Сначала вводится сенсибилизация, затем разрешающая доза.

Аллогенная сыворотка – сборная сыворотка, которую получают от разных животных в условиях одного хозяйства. Она содержит большой набор АТ и различных АГ.

Препараты для активной иммунизации – вакцины. Существуют живые и инактивированные вакцины.

Вакцины также классифицируют по: 1) Исходному вируссодержащему материалу – тканевые, эмбрион-вирус вакцины, культуральные вирусовакцины; 2) по методу аттенуации – лапинизированные (против ящура, чумы КРС и другого, используют кроликов), капринизированные (через организм козы, против оспы овец пассажированием через несколько коз, против КРС), овинизированные (через овец – против чумы КРС, ящура).

Методы введения вакцин:

1.Подкожно

2.Внутримышечно

3.Аэрозольное

4.Ректальный метод

5.Интраназально

ВОПРОС №42 «ИНАКТИВИРОВАННЫЕ ПРОТИВОВИРУСНЫЕ ВАКЦИНЫ, ИХ ПОЛУЧЕНИЕ, СВОЙСТВА, ПРИМЕНЕНИЕ, ОТЛИЧИЕ ОТ ЖИВЫХ ВАКЦИН».

Инактивированные вакцины – сложные по составу препараты. Производство их требует большого количества вируса. Основное требование, предъявляемое к убитым вакцинам, – полная и необратимая инактивация генома при максимальной сохранности АГ детерминанты и иммунная защита привитых животных. Для получения инактивированных вакцин в качестве инактивантов широко используются формалин, хлороформ, тиомерсал, гидроксиламин, этанол, бета-пропиолактон, этиленимин, УФ-, гамма-облучение, температура. Инактивированные вакцины применяются только парентерально. В состав их обязательно входят адъюванты – неспецифические стимуляторы иммуногенеза. Требуется большая дозировка и, как правило, повторное введение. Они создают менее напряженный, непродолжительный иммунитет, чем при употреблении живых вакцин.

ВОПРОС №43 «ФАКТОРЫ ПРОТИВОВИРУСНОГО ИММУНИТЕТА, ИХ ХАРАКТЕРИСТИКА».

Специфические

1)Связан с качественносвоеобразными защитными механизмами, т.к. вирусы не способны развиваться вне живой клетки 2)Защита направлена на 2 формы сущ. вируса: вне и внутриклеточную. На покоящиеся форму действуют специфические и неспецифические факторы, гуморальные и клеточные факторы защиты. Вегетативные формы – интерферон, который препятствует синтезу иРНК вируса. 3)Вирус нейтрализующее АТ не реагирует с вирусными информационными НК. 4)Методы и средства нейтрализации вируса эффективны только на определенном этапе. 5)Особые факторы защиты: образуются внеклеточные оксифильные и базофильные гранулы и наличие противовирусных ингибиторов. 6)Данный иммунитет длительный, а иногда пожизненный.

Неспецифические клеточные и общефизиологические реакции.

Температура

Гормоны – снижают резистентность, однако соматотропные гормоны повышают резистентность и усиливают воспалительную реакцию.

Беременное животное заболевает быстрее и заболевание протекает более тяжело.

Физиологическое состояние выделительной системы – скорость выделения вируса из организма.

Гуморальные факторы – наличие сывороточных ингибиторов (термостабильных или термолабильных). У каждого вида преобладает свой тип.

ВОПРОС №44 «ЖИВЫЕ ПРОТИВОВИРУСНЫЕ ВАКЦИНЫ, ИХ СВОЙСТВА, ПРИМЕНЕНИЕ И ОТЛИЧИЯ ОТ ИНАКТИВИРОВАННЫХ ВАКЦИН».

Живые противовирусные вакцины представляют собой лиофилизированные взвеси вакцинных штаммов вирусов, выращенных в различных биологических системах (КЭ, КК, в лабораторные животные) или используются природно-ослабленные штаммы возбудителя, которые создаются в процессе длительной эпизоотии. Основным свойством является стойкая утрата способности вызывать в организме привитого животного типичное инфекционное заболевание, также обладают способностью «приживаться» в организме животного, т.е размножатся. Пребывание и размножение вакцинного штамма продолжается обычно 5-10дн. до нескольких недель и не сопровождаются клиническими проявлениями, характерными для данной болезни, приводят к формированию иммунитета против инфекционного заболевания. Преимущества: высокая напряженность и длительность создаваемого ими иммунитета, приближающегося к постинфекционному. Возможность для большинства однократного введения. Введение не только подкожно, но и перорально и интерназально. Недостатки: чувствительность к неблагоприятным факторам. Строгие рамки хранения и транспортировки – температура – 4-8С. Недопустимо нарушение вакуума в ампулах с вакцинами. Строгие соблюдения правил асептики. Контроль качества: 1)всесторонние обследование доноров. 2)оценка качества питательной среды и КК на стерильность. 3)Надзор за качеством производственных штаммов вирусов. 4)Создание оптимальных условии для сохранения биоматериалов.

Инактивированные вакцины создают менее напряженный и продолжительный иммунитет, их надо вводить повторно.

ВОПРОС №45 «БАКТЕРИОФАГИ, ИХ ЗНАЧЕНИЕ И ОСНОВНЫЕ СВОЙСТВА».

Бактериофаги (от. Лат. Bacteriophaga) – разрушающий бактерии. Это вирусы, обладающие способностью проникать в бактериальные клетки репродуцироваться в них и вызывать их гибель.

История открытия бактериофага связана с академиком Гамалеем, наблюдавшим случайный лизис сибиреязвенных бактерий.

Творт – описал перерождение стафиллококов (1915). Д’Эрель (1917) подробно изучил взаимодействие фага и бактерий дизентерийной палочки и дал агенту название «бактериофаг». В дальнейшем были выделены вирусы грибов, микоплазм и других МО. Поэтому для обозначения этих вирусов употребляется термин «фаг» – пожиратель.

Структура и морфология фага.

Фаги состоят из нуклеиновой кислоты ДНК\РНК, окруженной капсидой, содержащей строго ориентированные капсомеры. Крупные фаги имеют головастикообразное строение, имеют головку, воротничок и хвостовой отросток, заканчивающийся 6-угольной базальной пластинкой к которой прикреплены фибриллы. Головка имеет 2 оболочки: наружную и такую внутреннюю мембраны, в которой заключена АК. Средний размер головки 60-100 нм, хвоста 100-200 нм. По морфологии фаги разделены на 6 групп:

Фаги с длинным отростком, чехол которого сокращается – Т-четные фаги.

Фаги с длинным отростком, чехол которого не сокращается.

Фаги с аналогом отростка.

Фаги с коротким отростком.

Нитевидные фаги.

Фаги без отростка.

Химический состав фага.

Головка фага содержит одну из нуклеиновых кислот. В оболочке также содержатся липиды, углеводы. Фаги выдерживают давление до 6 тысяч атмосфер. Они устойчивы к действию окружающей среды, сохраняют свою активность в запасных ампулах до 13 лет.

Быстро погибают при действии кипячения, УФЛ, определенных химических средств (1% фенол, спирт, эфир хлороформ не изменяют фага). Некоторые вещества: тимол, хлороформ, динитрофенол не оказывает влияние на фаги, но убивают бактерии.

1% раствор формалина инактивирует фаг. Различают фаги: полифаги (лизируют родственные бактерии), монофаги (лизируют родственные бактерии), монофаги (лизируют бактерии одного вида), фаги вызывающие лизис определенного серотипа 1 вида. По типоспецифическим свойствам фаги делят на серотипы. Специальные фаги можно легко адаптировать к родственным бактериям путем пассажирования на бактериях одного вида. Явление бактериофагии легко можно наблюдать как в жидких, так и в плотных питательных средах. Если в чашку с питательной средой засеять культуру и нанести несколько капель фага высокой концентрации, то на этом месте роста не будет – стерильные пятна. По механизму взаимодействия с клетками фаги подразделяются на вирулентные и умеренные.

Феномен бактериофагии, вызванный умеренными фагами проявляется только в виде фаз адсорбции, проникновения в клетки, репродукции и выделения фага. Весь процесс репродукции идет по типу ДНК-содержащих вирусов. Вирулентные фаги обеспечивают формирование новых фагов и лизис бактерий клетки. Установлено, что в инфицированных фагом бактериях в течение 1 минуты появляется 7-8 частиц фага.

Схема репродукции.

1.Адсорбция фага на оболочке МО и растворение ее. Фаги адсорбируются своими жгутиками, эти жгутики прочно соединяются с рецепторами клеточной стенки, в результате чего происходит сокращение фаговой частицы и конец отростка вонзается в оболочку бактериальной клетки и одновременной фаг выделяет лизоцимоподобный фермент, который растворяет оболочку клетки.

2.Впрыскивание нуклеиновой кислоты внутрь микробной клетки. В микробную клетку впрыскивается вся нуклеиновая кислота и часть белков, чехлик остается на поверхности бактериальной клетки.

3.Латентная фаза – эклипс-фаза. Фаза способствует развитию ДНК вирусов. В начале синтезируется и-РНК, она дает начало синтезу ранних вирусных белков, которые прекращают клеточный метаболизм и дают начало формированию дочерних нуклеиновых кислот.

4.Образование новых фаговых частиц. Соединение двух основных фаговых частиц путем заполнения белковой оболочки фага нуклеиновыми фаговыми частицами.

5.Растворение оболочки бактериальной клетки и выход вновь образованных частиц за пределы клетки. Разрыву клеточной стенки способствуют: сильное увеличение внутриклеточного давления, а с другой стороны действие ферментативных процессов, вызываемых фагами. Количество воспринимаемых фагов различно и колеблется от 1 до 1000 и более.

Весь процесс репродукции происходит от 3 до 10 часов.

Лизогения – наряду с вирулентными фагами существуют и умеренные фаги, отличающиеся характером взаимодействия с бактериальной клеткой. Их основная особенность состоит в том, что они способны переходить из вегетативного состояния в неинфекционную форму, названную профагом, неспособную вызывать лизис бактерий. Бактериальные клетки содержащие профаг в хромосоме называются лизогенными, а явление – лизогения. При этом явлении зараженные фагом бактерии не лизируются. Но при искусственном лизисе могут высвободить фаг, способный инфицировать бактерии данного вида. Переход профага в вегетативный фаг происходит не часто. При заражении умеренными фагами 1 часть клеток лизируется с образованием вегетативного фага, а другая часть выживает и становиться лизогенной.

В лизогенных бактериях ДНК фага интегрируется в ДНК клетки и умеренный фаг преобразуется в профаг, который не обладает литическим свойством.

Лизогенные бакте6рии образующиеся в результате лизогенизации становятся носителями фага и на длительное время приобретают иммунитет. Эта связь прочная и нарушается при воздействии на бактерию индуцирующих агентов. Это УФ лучи, ионизирующая радиация, химические мутагены. Под влиянием указанных факторов профаг переводится в автономное состояние, происходит дезинтеграция.

Лизогенизация бактерий сопровождается изменением их свойств (морфологических, культуральных и биологических свойств). Нетоксичные штаммы становятся токсигенными. Изменение свойств бактерий – фаговая конверсия. Лизогенные бактерии – наиболее удобные модели для изучения взаимодействия вирусов и клетки.

В настоящее время умеренные фаги широко используются для изучения вопросов генетики, с помощью которой можно более точно дифференцировать процессы изменчивости. Под влиянием радиации увеличивается число фаговых частиц, продуцируемых клетками лизогенных бактерий.

Практическое использование фагов – фаги используются для титрования бактерий, лечения и профилактики ряда инфекционных заболеваний, используются для определения дозы радиации на космических кораблях.

ВОПРОС №46 «ЛАБОРАТОРЫНЕ ЖИВОТНЫЕ, ЦЕЛИ И МЕТОДЫ ИХ ИСПОЛЬЗОВАНИЯ В ВИРУСОЛОГИИ».

В связи с тем, что вирусы могут размножаться только в живых клетках, на самых ранних этапах развития вирусологии широко применяли культивирование вирусов в организме лабораторных животных, специально выращиваемых для проведения на них исследований.

Используют: 1)для обнаружения вируса в ПМ 2)первичного выделения вируса из ПМ 3)накопления вирусной массы 4)поддержания вируса в лаборатории в активном сост. 5)титровании вируса 6)в качестве тест-объекта в РН 6)получение гипериммунных сывороток. Используемые животные: белые мыши (бешенство, ящур), белые крысы (грипп свиней, б. Ауески), морские свинки (бешенство, ящур, чума плотоядных). Кролики (бешенство, миксомы кроликов).

Требования к лабораторным животным – животное должно быть чувствительным к данному вирусу; возраст его имеет большое значение для культивирования многих вирусов. Большинство вирусов лучше размножается в организме молодых и даже новорожденных животных; стандартная чувствительность достигается подбором животных определенного возраста и одинаковых по массе. По чувствительности наибольшей стандартностью обладают так называемые линейные животные, полученные в результате близкородственного скрещивания в течении ряда поколений; лабораторные животные должны быть здоровы. Животные, поступающие в виварий вирусологической лаборатории, должны быть привезены из благополучного по инфекционным заболеваниям хозяйства. Их содержат на карантине и ведут клиническое наблюдение. При наличии заболевания их уничтожают.

Животных размещают так, чтобы с одной стороны, было обеспечено функционирование всех систем организма в пределах физиологической нормы, с другой – исключено взаимное перезаражение и распространение инфекции за пределы вивария. Для животных разных видов применяют разные способы индивидуальной метки. Для крупных животных и кур используют металлические бирки со штампованным номером. При использовании в эксперименте небольшой группы животных и при непродолжительном сроке его можно выстригать шерсть знаками на спине, бедрах. Метка белых мышей, белых крыс может быть проведена ампутацией отдельных пальцев на передних или задних конечностях. Часто пользуются методом нанесения цветных пятен на непигментированную шерсть. Заражение лабораторных животных.

1. подкожно – спина.

2. Внутрикожно – пятка

3. Внутримышечно – бедро

4. Внутривенно – в хвост (предварительно растерев горячей водой и пережав)

5. Интранозально – капля в нос (предварительно дают слабый эфирный наркоз, что бы предупредить чихание)

6. Интероцеребрально – череп аккуратно просверливается иголочкой, не нажимать, капля уходит сама.

Все поверхности предварительно смазывают йодированным спиртом.

Препарирование лаб. животных (на примере белой мыши)

Кожа смазывается дезинфектором.

Производится разрез по linea alba.

Вскрытие грудины – берутся легкие и помещаются в пробирку №1

Вскрытие брюшной полости – берутся печень, селезенка, почка и помещаются в пробирку №2.

Производится вскрытие черепной коробки. Берется головной мозг, делаются срезы 4-х слоев, кусочки помещаются на фильтровальную бумагу и делаются отпечатки на стекло.

ВОПРОС №47 «СТРОЕНИЕ РАЗВИВАЮЩЕГОСЯ КУРИНОГО ЭМБРИОНА. ОСНОВНЫЕ ЗАДАЧИ, РЕШАЕМЫЕ МЕТОДОМ ЗАРАЖЕНИЯ КЭ И ЕГО ПРЕИМУЩЕСТВА ПЕРЕД КУЛЬТИВИРОВАНИЕМ ВИРУСОВ НА ЛАБОРАТОРНЫХ ЖИВОТНЫХ.

Используют КЭ в вирусологии в основном для тех же целей, что и ЛЖ: обнаружения в патматериале активного вируса биопробой; первичного выделения вируса; поддержания вирусов в лаборатории; титрования вирусов; накопления вируса для лабораторных исследований и получения вакцин; как тест-объект в реакции нейтрализации.

Строение: 1.Скорлупа 2.Подскорлупная оболочка 3.Воздушная камера 4.Аллантоисная полость 5.Желточный мешок 6.Альбуминный мешок 7.ХАО – хорион-аллантоисная оболочка 8.Амниотическая полость 9.Эмбрион 10.Канатик (соединение желточного мешка с пуповиной). С 5-12день КЭ могут использоваться для заражения

1) Скорлупа и подскорлупная оболочка служит хорошей защитой от факторов внешней среды. 2)КЭ содержат субстрат для выращивания вируса. 3)КЭ устойчивы к воздействиям связанных с выделением исследуемого материала. 4)КЭ легко доступны, экологичны, не требуют ухода, кормления, не образуют АТ.

6 методов заражения КЭ: 1)Заражение в аллантоисную полость (грипп, болезнь Ньюкасла). КЭ фиксируют вертикально тупым концом вверх, на стороне зародыша на 5-6мм выше границы воздушной камеры делают отверстие 1мм. Иглу вводят параллельно продольной оси на глубину 10-12 мм. 2)на ХАО (оспа, чума плотоядных): а)Ч/з естественную воздушную камеру. КЭ в штатив тупым концом вверх, в скорлупе против центра воздушной камеры окно 15-20мм. Снимают подскорлупную оболочку. На ХАО наносят 0,2 мм суспензии. Отверст. лейкопластырем. б)Ч/з искусственную воздушную камеру. Штатив горизонтально зародышем вверх. Делают 2 отверстия: над центром воздушной камеры, другое 0,2-0,5см сбоку, со стороны зародыша. Из первого зародыша отсасывают воздух, образуется искусственная воздушная камера, дном которого является ХАО, на него наносят инфекционную жидкость, заклеивают лейкопластырем. 3)В желточный мешок (хламидий, б. Марека): а)КЭ помещают в штатив вертикально. Отверстие над центром воздушной камеры, иглу на 3,5-4см под углом 45, противоположно месту нахождения зародыша. б)аналогичный путь заражения осуществляется на горизонтально укрепленном штативе КЭ; при этом зародыш находится внизу, а желток над ним. 4)В амниотическую полость (грипп, болезнь Ньюкасла): закрыт способ – зародыш. вверх. Иглу вводят затупленным концом по направлению к зародышу откр. способ – над воздушной полостью отверстие 1,5-2,5см. Удаляют подскорлупную оболочку. Пинцет продавливают ХАО по направлению к зародышу. Затем амниотическую оболочку вместе с ХАО и подтягивают к окну, водят туда суспензию. Отпускают. Лейкопластырь. 5)Заражение в тело зародыша. 6)в кровеносные сосуды.

ВОПРОС №48 «ВИДЫ КУЛЬТУР КЛЕТОК И ИХ ИСПОЛЬЗОВАНИЕ В ВИРУСОЛОГИИ. КРАТКАЯ ХАРАКТЕРИСТИКА КАЖДОГО ВИДА».

Культура клеток (КК) – это клетки многоклеточного организма, живущие и размножающиеся в искусственных условиях вне организма. Методика культивирования особенно успешно стала развиваться после 40-х годов. Этому способствовали следующие события: открытие антибиотиков, предотвращающих бактериальное заражение КК, открытие Хангом и Эндерсом способности вирусов вызывать специфическую деструкцию клеток. Дульбекко и Фогт (1952) предложили методику трипсинизации тканей и получения однослойных КК. Применяют следующие КК: 1) ПТКК – клетки, полученные непосредственно из органов или тканей организма, растущие in vitro в один слой. КК можно получить практически из любого органа или ткани человека или животного. Лучше это удается сделать из эмбриональных органов, т.к. клетки эмбрионов обладают более высокой потенцией роста. Чаще всего для получения их используют почки, легкие, кожу, тимус, тестикулы. Для получения первичных клеток от здорового животного не позднее 2-3 часов после убоя берут соответствующие органы или ткани, измельчают, обрабатывают трипсином, панкреатином, коллагеназой. Ферменты разрушают межклеточные вещества, полученные при этом отдельные клетки суспендируют в питательной среде и культивируют на внутренней поверхности пробирок или матрасов в термостате при 37С. Клетки прикрепляются к стеклу и начинают делится. На стекле формируется слой толщиной в одну клетку, обычно через 3-5 дней. Питательную среду меняют по мере загрязнения ее продуктами жизнедеятельности клеток. Монослой сохранят жизнеспособность в течение 7-21 дня. При культивировании вирусов в КК удается получать препараты с высоким титром вируса, что важно при получении АГ и вакцин. 2) Субкультуры – их часто используют и получают из первичных клеток, выращенных в матрасах, путем снятия их со стекла раствором версена или трипсина, ресуспендирования в новой питательной среде и пересева на новые матрасы или пробирки. Через 2-3 суток формируется монослой. Они по чувствительности не уступают ПТКК, более экономичны. 3) Перевиваемые КК – клетки, способные к размножению вне организма неопределенно длительное время. В лаборатория их поддерживают путем пересевов из одного сосуда в другой (при условии замены питательной среды). Получают их из первичных КК с повышенной активностью роста путем длительных пересевов в определенном режиме культивирования. Клетки перевиваемых культур имеют одинаковую форму, гетероплоидный набор хромосом, стабильны в условиях роста in vitro, некоторые из них обладают онкогенной активностью. «+» перед первичными – проще готовить, заранее можно проверить на наличие латентных вирусов и микрофлоры; клональные линии обеспечивают более стандартные условия для размножения вирусов, чем первичные. Большинство перевиваемых клеток обладает более широким спектром чувствительности к вирусам, чем соответствующие первичные культуры. Но они склонны к злокачественному перерождению. 4)Диплоидные КК – морфологически однородная популяция клеток, стабилизированная в процессе культивирования in vitro, имеющая ограниченный срок жизни, характеризующаяся 3 фазами роста, сохраняющая в процессе пассирования кариотип свойственный исходной ткани, свободная от контаминантов и не обладающая туморогенной активностью при трансплантации хомячкам. Их тоже получают из первичных клеток. В отличие от них имеют ограниченные возможности пассирования. Максимальное число пассажей 50 -\+ 10, затем количество делящихся клеток резко уменьшается и они гибнут. Преимущества перед перевиваемыми КК – 10-12 дней могут быть в жизнеспособном состоянии без смены питательной среды; при смене среды один раз в неделю остаются жизнеспособны в течение 4 недель; особенно пригодны для длительного культивирования вирусов, у них сохранена чувствительность исходной ткани к вирусам. 5)Суспензионные КК – перевиваемые культуры клеток в суспензии.

ВОПРОС №49 « ПЕРВИЧНО-ТРИПСИНИЗИРОВАННЫЕ КУЛЬТУРЫ КЛЕТОК. ИХ ДОСТОИНСВА И НЕДОСТАТКИ. ПРИМЕНЕНИЕ В ВИРУСОЛОГИЧЕСКИХ ИССЛЕДОВАНИЯХ».

ПТКК – клетки, полученные непосредственно из органов или тканей организма, растущие in vitro в один слой. КК можно получить практически из любого органа или ткани человека или животного. Лучше это удается сделать из эмбриональных органов, т.к. клетки эмбрионов обладают более высокой потенцией роста. Чаще всего для получения их используют почки, легкие, кожу, тимус, тестикулы. Для получения первичных клеток от здорового животного не позднее 2-3 часов после убоя берут соответствующие органы или ткани, измельчают, обрабатывают трипсином, панкреатином, коллагеназой. Ферменты разрушают межклеточные вещества, полученные при этом отдельные клетки суспендируют в питательной среде и культивируют на внутренней поверхности пробирок или матрасов в термостате при 37С. Клетки прикрепляются к стеклу и начинают делится. На стекле формируется слой толщиной в одну клетку, обычно через 3-5 дней. Питательную среду меняют по мере загрязнения ее продуктами жизнедеятельности клеток. Монослой сохранят жизнеспособность в течение 7-21 дня. При культивировании вирусов в КК удается получать препараты с высоким титром вируса, что важно при получении АГ и вакцин. С помощью метода КК были решены некоторые теоретические вопросы – о взаимодействии вируса с клеткой, месте репродукции вирусов, механизме антивирусной иммунизации. В настоящее время КК применяют для выделения вирусов из патматериала, их индикации, идентификации, для постановки реакции нейтрализации, определения титра вирусов, для приготовления диагностических АГ и вакцин, в качестве тест – объектов в реакции нейтрализации.

ВОПРОС №50 «ПИТАТЕЛЬНЫЕ СРЕДЫ И РАСТВОРЫ, ИСПОЛЬЗУЕМЫЕ В ВИРУСОВЛОГИИ. ТРЕБОВАНИЯ К ПОСУДЕ ДЛЯ КУЛЬТИВИРОВАНИЯ КК, ЕЕ ОБРАБОТКА».

Наиболее широко используют при работе с КК растворы Хенкса и Эрла, которые готовят на бидистиллированной воде с добавлением различных солей и глюкозы. Эти сбалансированные солевые растворы используют для приготовления всех питательных сред, т.к. они обеспечивают сохранение рН, осмотическое давление в клетках и соответствующую концентрацию необходимых неорганических веществ. Их же применяют для отмывания от ростовых сред, разведений вируса и другого. При культивировании клеток применяют диспергирующие растворы трипсина и версена. Раствор трипсина используют для разделения кусочков тканей на отдельные клетки и для снятия слоя клеток со стекла. Раствор версена – используют для снятия клеток со стекла. Питательные среды (далее ПС) – различают: 1)естественные среды, которые состоят из смеси солевого раствора, сыворотки крови, тканевого экстракта, коровьей амниотической жидкости и др. Количество компонентов варьирует. Используют их редко. 2)искусственные ПС – ферментативные гидролизаты различных белковых продуктов: гидролизат лактальбумина, мышечный ферментативный гидролизат и др. Из синтетических сред наиболее широкое применение нашли среда 199 и среда Игла. Во все питательные среды и некоторые солевые растворы добавляют индикатор феноловый красный для определения концентрации водородных ионов. Для уничтожения микрофлоры перед использованием в среды добавляют АБ: пенициллин и стрептомицин по 100ЕД\мл. Все ПС делят на 2 группы: ростовые – обеспечивают жизнь и размножение клеток; поддерживающие – обеспечивающие жизнедеятельность клеток, но не их размножение (они не содержат сыворотки крови). Посуда – качество посуды имеет важное значение для успешного культивирования клеток вне организма. Она д\б стерильной, обезжиренной, не обладать токсическим действием. Для культивирования клеток используют пробирки, матрасы на 50, 100, 250, 500, 1000, 1500 мл, роллерные колбы на 500, 1000, 2000 мл, различные пипетки, флаконы для ПС и растворов, колбы различной вместимости. Обработка стеклянной посуды состоит из нескольких этапов: 1)инфицированную посуду погружают в 2-3% раствор NaOH на 5-6 часов; 2) споласкивают в 3-4 сменах водопроводной воды; 3) замачивают в 0,3-0,5% растворе порошка; 4) тщательно моют с помощью ерша в теплом растворе порошка; 5) споласкивают в нескольких сменах водопроводной воды; 6)споласкивают в дистиллированной воде, содержащей 0,5% HCl; 7)споласкивают 4-5 раз водопроводной водой и в 3 сменах дистиллированной воды; 8) сушат в сушильном шкафу; 9)монтируют и стерилизуют в сушильном шкафу или автоклавируют.

ВОПРОС №51 «ПРИНЦИП ЗАРАЖЕНИЯ КУЛЬТУР КЛЕТОК ВИРУССОДЕРЖАЩИМ МАТЕРИАЛОМ. ИНДИКАЦИЯ ВИРУСОВ В КУЛЬТУРЕ КЛЕТОК».

Для заражения отбирают пробирки (матрасы) со сплошным клеточным монослоем, просматривая их под малым увеличением микроскопа. Ростовую питательную среду сливают, клетки 1-2 раза промывают раствором Хенкса, чтобы удалить сывороточные АТ и ингибиторы. В каждую пробирку вносят по 0,1-0,2 мл вируссодержащего материала и покачиванием распределяют его равномерно по слою клеток. Оставляют на 1-2 часа при 22-37С для адсорбции вируса на поверхности клеток. Вируссодержащий материал удаляют из емкостей и наливают поддерживающую среду. Для индикации существуют следующие основные методы индикации вируса в КК: по цитопатическому эффекту или цитопатическому действию; по положительной реакции гемадсорбции; по образованию бляшек; по обнаружению внутриклеточных включений; по выявлению вирусов в реакции иммунофлуоресценции; по обнаружению интерференции вирусов; по подавлению метаболизма клеток (цветная проба); электронной микроскопией. Выявление специфической дегенерации клеток (по ЦПД) – простым признаком являются дегенеративных изменения в клетках (проявление ЦПД). Наступившие видимы изменения в клетке называются цитопатические изменения. Эти изменения в инфицированных клетках зависят от дозы и биологических свойств исследуемого вируса время проявление ЦПД и его особенности иногда позволяет провести идентификацию выделенных вирусов. При инфицирования КК средними дозами вируса характер этих изменений специфичен и может быть классифицирован на группы: очаговое мелкозернистое перерождение, мелкозернистое перерождение по всему монослою, очаговое гроздевидное скопление округлых клеток, равномерная зернистость, объединение клеток в гигантские многоядерные симпласты и синцитии. Степень дегенерации оценивают по 4 бальной системе.

Иногда наблюдают отсутствие ЦПД, но это считают за отсутствие вируса нельзя и потому проводят 2-3 слепых пассажа и на 2-3 пассаже вирусы могут проявлять желаемые свойства.

ВОПРОС №52 «МЕТОДЫ ОБНАРУЖЕНИЯ ВИРИОНОВ ВИРУСОВ И ВИРУСНЫХ ТЕЛЕЦ-ВКЛЮЧЕНИЙ, ИХ ПРАКТИЧЕСКЕ ЗНАЧЕНИЕ».

Обычно удается рассмотреть вирионы вирусов и установить их структуру с помощью электронной микроскопии, позволяющей различать объекты размерами до 0,2-0,4 нм. Обнаружение с помощью электронной микроскопии в материале от больных животных вирионов может служить доказательством наличия вирусов в этом материале и в некоторых случаях используется для диагностики вирусных болезней. Но этот метод технически сложный и дорогостоящий, не позволяет точно идентифицировать обнаруженный вирус. В световой микроскоп удается увидеть только вирионы оспенных вирусов на пределе видимости. Способность к окраске теми или иными красителями, размеры, форма, структура, местоположение в клетке телец-включений, образованных разными вирусами, неодинаковые, но специфичные для каждого вируса. Поэтому обнаружение в материале от больных животных внутриклеточных телец-включений с определенными характеристиками позволяет судить о том, каким вирусом они образованы, а значит, и о присутствии этого вируса в исследуемом материале. Для обнаружения телец-включений готовят мазки или отпечатки (посмертно или прижизненно), которые подвергают специальным методам окраски с последующей микроскопией. Для телец-включений, образуемых разными вирусами, методы окраски различны. Разработано много рецептов окраски. Среди них есть и универсальные, к которым относится окраска гематоксилин-эозином.

Сколько бы ни проводилось исследований, ученые признают, что вирусы остаются до сих пор мало изученными, а потому их распространение и влияние на человеческий организм и на окружающую среду в целом спрогнозировать довольно сложно. И дело не только в том, что изучение инфекционных микроорганизмов требует наличия квалифицированных кадров, специального оборудования и немалых средств, поскольку каждый вирус имеет свою структуру, особенности размножения и устойчивость к внешней среде.

Главная проблема в том, что в стерильных лабораторных условиях поведение микроорганизмов отличается от внешней среды - хотя бы потому, что в природных условиях они взаимодействуют с другими организмами и это неизбежно отражается на их развитии и мутациях. Поэтому до сих пор природа вирусов, история их возникновения и развития досконально и не изучены.

Еще одна серьезная проблема - мутации вирусов, их изменение под воздействием окружающей среды. Приходится постоянно менять условия экспериментов, вести статистику по скорости и форме появления мутации, воздействовать на них различными медицинскими препаратами.

Но, несмотря на все сложности, исследования в этой сфере продолжаются, ведь каждая инновация приближает к созданию новых эффективных лекарств, предупреждению заболеваний и эпидемий. Это особенно важно, учитывая тот факт, что вирусы способны поражать все существующие клетки, как растений, так и человека. Только за последние несколько месяцев появилось множество перспективах открытий, о самых важных из них и пойдет далее речь.

3D поможет лучше узнать врага

Впервые в истории исследователи из шведской Национальной ускорительной лаборатории SLAC получили с помощью уникального рентгеновского лазера трехмерное изображение, демонстрирующее часть внутренней структуры инфекционного вируса. В статье, опубликованной в свежем номере Physical Review Letters, говорится, что ученые исследовали так называемый мимивирус , который относится к категории гигантских вирусов, размеры которых в тысячи раз больше обычных. Мимивирус также отличается генетической сложностью - он обладает почти тысячью крупных генов, что гораздо больше, чем у ВИЧ.

Специалисты давно пытаются узнать больше о мимивирусах - их происхождении, а также о том, заимствуют ли они со временем гены у организма-хозяина, однако большинство экспериментов заходило в тупик. Шведские физики использовали новую методику, которая позволила создать трехмерную модель вируса. С помощью сложного программного обеспечения, разработанного в Корнелльском университете, исследователи сделали множество фото и сложили отдельные снимки различных вирусных частиц в одно общее 3D-изображение мимивируса. Это позволило получить о нем максимально полную и достоверную информацию.

Технология открывает новую эру в вирусологии: теперь изучать микробы, а соответственно, бороться с ними будет гораздо проще. В ближайшее время планируется таким же образом исследовать вирусы, которые по размеру меньше мимивируса, но зачастую опаснее, включая грипп, герпес и ВИЧ.

Грипп - редкое заболевание


В новом номере журнала PLOS Biology появилось любопытное исследование, свидетельствующее о том, что взрослые в возрасте старше 30 лет болеют гриппом максимум один раз в пять лет. К такому выводу пришла международная группа ученых, возглавляемая специалистами Лондонского имперского колледжа. Ученые говорят, что при постановке диагноза большинство врачей совершают фатальную ошибку, путая вирус гриппа с простудой или болезнями, вызванными различными возбудителями распираторных и инфекционных заболеваний, типа риновирусами или коронавирусами.

Исследователи проанализировали образцы крови у 151 добровольца из Южного Китая, проверяя их на уровни антител против девяти обнаруженных в тех местах различных штаммов вируса гриппа. В процессе исследования выяснилось, что дети заболевают гриппом один раз в два года, но со временем приобретают иммунитет.

В итоге грипп для взрослых - довольно редкое заболевание и выявить его можно исключительно по анализу крови, а уж никак не по "внешним традиционным" симптомам. Это открытие глобально изменит подход к диагностике простудных заболеваний, а также методике их лечения.

Крокодилы научат бороться с микробами


Ученые из Университета Джорджа Мейсона выяснили, что аллигаторы обладают уникальной иммунной системой, которая защищает их от всевозможных вирусов и микробов. Подробности исследования описаны в последнем номере журнала PLoS ONE .

Ранее специалисты из Университета Луизианы обнаружили, что сыворотка крови рептилий способна уничтожать 23 штамма бактерий и даже бороться с ВИЧ. Тогда химики пришли к заключению, что противомикробными молекулами в крови аллигаторов, скорее всего, являются ферменты, расщепляющие особый тип липидов.

Нынешний же эксперимент показал, что противомикробными молекулами в сыворотке крови аллигаторов являются пептиды CAMP, или, как их еще называют, катионные антимикробные пептиды. Опыты, в частности, показали, что они успешно уничтожают кишечную палочку, золотистый стафилококк и синегнойную палочку.

Результаты исследования станут основой для создания нового поколения антибиотиков, ведь против большинства имеющихся препаратов вирусы уже выработали устойчивость.

Простой способ убить ВИЧ


Представители Научно-исследовательского института Скриппса при содействии ведущих американских лабораторий создали новый вид вакцины против ВИЧ. Детали исследования описаны в журнале Nature .

Вирус иммунодефицита - один из самых коварных, поскольку он активно мутирует и приспосабливается ко всем имеющимся препаратам. Во многом это объясняет тот факт, что эффективного лекарства против него пока нет.

Новый экспериментальный препарат eCD4-Ig блокирует практически все штаммы вируса иммунодефицита, полностью их обезвреживая. Немаловажно, что при проведении опытов на обезьянах, никакого иммунного ответа организма на eCD4-Ig обнаружено не было.

Очевидно белок, ставший основой вакцины, похож на тот, что содержится в клетках живого организма. Исследования также показали, что препарат связывается с оболочкой ВИЧ-1 гораздо лучше, чем самые передовые нейтрализующие антитела, поэтому он может стать действенной альтернативой существующим вакцинам против ВИЧ.

Для доставки в организм eCD4-Ig используется аденоассоциированный вирус, не вызывающий никаких заболеваний. После инъекции в мышечную ткань, он превращает клетки в фабрики по производству нового защитного белка, которые будут активны в течение многих лет, а возможно, и возможно, и десятилетия. Разработчики препарата надеются, что клинические испытания вакцины на людях начнутся уже в этом году, ведь препарат обещает навсегда избавить человечество от одного из смертельных заболеваний.

Биологическое оружие в действии


Как известно, вирусы могут стать одним из наиболее действенных видов биологического оружия: например, если выпустить оспу, то будет уничтожено больше половины населения всего земного шара. Также доказано, что некоторые вирусы оказывают мощное воздействие на сознание живых существ. В этом в очередной раз убедились специалисты из французского Университета Перпиньян, опубликовавшие научную работу по этой теме в журнале Proceedings of the The Royal Society.

Все начинается с того, что оса откладывает свои яйца, а вместе с ними и особый вирус DcPV, внутрь живых божьих коровок. Спустя три недели, личинка осы выходит из тела жертвы и прядет кокон, а божья коровка становится полностью парализованной.
Вирус DcPV, который идентифицировали совсем недавно, считается ближайшим "родственником" вируса полиомиелита, вызывающего паралич. Также установлено, что активно размножаясь, он поражает нервную систему. Все эти симптомы наглядно демонстрирует божья коровка, мозг которой оккупирован DcPV.

РАССКАЗАТЬ ДРУЗЬЯМ

Саратовский государственный университет имени Н. Г. Чернышевского

ВИРУСОЛОГИЯ

МЕТОДИЧЕСКИЕ МАТЕРИАЛЫ

Учебно-методическое пособие для студентов биологического факультета

Вирусология. Методические материалы:Учеб.-метод. пособие для студ. биол. фак. / Авторы-сост. Е. В. Глинская, Е. С. Тучина, С. В. Петров.

– Саратов, 2013. 84 с.: ил.

ISBN 978-5-292-03935-8

Учебно-методическое пособие составлено в соответствии с «Программой по вирусологии для студентов биологических факультетов университетов».

Оно содержит теоретический материал, касающийся истории развития вирусологии, природы и происхождения вирусов, химического состава, морфологии и репродукции вирусов, разнообразия вирусов, патогенеза и лабораторной диагностики вирусных инфекций, особенностей противовирусного иммунитета. В конце пособия приведены план проведения лабораторных работ, словарь основных терминов и тестовые задания для самоконтроля.

Для студентов биологического факультета, обучающихся по направлению подготовки 020400 «Биология».

Кафедра микробиологии и физиологии растений биологического факультета

(Саратовский государственный университет имени Н. Г. Чернышевского)

Доктор биологических наук Л. В. Карпунина (Саратовский государственный аграрный университет имени Н.И. Вавилова)

ВВЕДЕНИЕ

Вирусология занимается исследованием природы и происхождения вирусов, их химического состава, морфологии, механизмов размножения, биохимических и молекулярно-генетических аспектов их взаимоотношений с клеточными организмами, проблемами противовирусного иммунитета и разработкой мер и средств предупреждения, диагностики и лечения вирусных заболеваний.

Актуальность вирусологии на настоящий момент не вызывает сомнений. Вирусы являются одними из главных возбудителей многих инфекционных и онкологических заболеваний человека, животных и растений. Вирусы представляют собой идеальный объект для молекулярных биологов и генетиков.

Пособие предназначено для подготовки студентов к семинарским и практическим занятиям по курсу «Вирусология». В пособии рассмотрены теоретические вопросы общей вирусологии, представлен детальный план проведения практических работ, приведен перечень необходимой литературы, а также тестовые задания для самоконтроля.

Хочется надеяться, что учебное пособие «Вирусология. Методические материалы» окажется полезным как студентам и преподавателям вузов, так и специалистам-вирусологам.

Раздел 1. Вирусология как наука. История развития вирусологии. Природа и происхождение вирусов.

ВИРУСОЛОГИЯ КАК НАУКА

Вирусология – наука, изучающая природу и происхождение вирусов, особенности их химического состава, генетики, строения, морфологии, механизмов размножения и взаимодействия с клеточными организмами.

Вирусология занимает важное место среди биологических наук. Велико ее теоретическое и практическое значение для медицины, ветеринарии и сельского хозяйства. Вирусные болезни широко распространены у человека, животных и растений; кроме того, вирусы служат моделями, на которых изучаются основные проблемы генетики и молекулярной биологии. Изучение вирусов привело к пониманию тонкой структуры генов, расшифровки генетического кода, выявлению механизмов мутации.

Современная вирусология включает следующие разделы:

- общая вирусология, изучающая основные принципы строения и размножения вирусов, их взаимодействие с клеткой-хозяином, происхождение и распространение вирусов в природе.

- частная (медицинская, ветеринарная и сельскохозяйственная) вирусология изучает особенности различных систематических групп вирусов человека, животных и растений и разрабатывает методы диагностики, профилактики и лечения вызываемых этими вирусами болезней.

- молекулярная вирусология исследует молекулярно-генетическую структуру вирусов, строение и функции вирусных нуклеиновых кислот, механизмы экспрессии вирусных генов, процессы взаимодействия с клеткой, природу устойчивости организмов к вирусным заболеваниям, молекулярную эволюцию вирусов.

ИСТОРИЯ РАЗВИТИЯ ВИРУСОЛОГИИ

Первые упоминания о вирусных болезнях людей и животных встречаются в дошедших до нас письменных источниках древних народов. В них, в частности, содержатся сведения об эпизоотиях бешенства у волков, шакалов и собак и полиомиелите в Древнем Египте (II–III тыс. лет до н. э.). О натуральной оспе было известно в Китае за тысячу лет до нашей эры. Давнюю историю имеет также желтая лихорадка, на протяжении столетий косившая первопроходцев в тропической Африке и моряков. Первые описания вирусных болезней растений относятся к живописной пестролепестности тюльпанов, которые уже около 500 лет выращивают голландские цветоводы.

Началом становления вирусологии как науки можно считать конец XIX века. Работая над созданием вакцины против бешенства, Л. Пастер в 80-х гг. XIX века впервые применил термин «вирус» (от лат. «virus» – яд) для обозначения инфекционного агента. Пастер был первым, кто начал использовать лабораторных животных в работах по изучению вирусов. Он инокулировал материал, полученный от больных бешенством, в мозг кролика. Однако Пастер не делал различия между вирусами как таковыми и другими инфекционными агентами.

Первым, кто выделил вирусы как самостоятельную группу инфекционных агентов, был русский учёный Д. И. Ивановский. В 1892 г. в результате собственных исследований он пришёл к выводу, что мозаичную болезнь табака вызывают бактерии, проходящие через фильтр Шамберлана, которые, кроме того, не способны расти на искусственных субстратах. Представленные данные о возбудителе табачной мозаики длительное время являлись критериями для отнесения возбудителей болезней к «вирусам»: фильтруемость через «бактериальные» фильтры, неспособность расти на искусственных средах, воспроизведение картины заболевания фильтратом, освобожденным от бактерий и грибов.

В 1898 г. М. Бейеринк подтвердил и расширил исследования Д. И. Ивановского о вирусе табачной мозаики и сформулировал первую полноценную теорию о вирусах как о новом классе микроорганизмов и возбудителей болезней. Несмотря на то что многие зарубежные ученые приписывали ему открытие вирусов, М. Бейеринк признал приоритет Д. И. Ивановского.

В последующие годы микробиологи и врачи установили вирусную этиологию многих антропонозных и зоонозных болезней. Так, уже в 1898 г. Ф. Леффлер и П. Фрош установили фильтруемость возбудителя ящура коров. Они первыми показали, что вирусы могут поражать не только растения, но и животных.

Серия открытий новых вирусов пришлась на первое десятилетие XX века. Началась она с исследований У. Рида, установившего в 1901 г. вирусную природу тропической желтой лихорадки. У. Рид руководил исследованиями, в ходе которых было установлено, что вирус жёлтой лихорадки присутствует в крови больного в течение первых трёх дней заболевания и что он может передаваться при укусе комара; таким образом, впервые было показано, что вирусы могут передаваться насекомыми. Семь лет спустя, было доказано, что вирусными болезнями являются также полиомиелит (К. Ландштейнер и Э. Поппер), лихорадка денге (П. Ашбери и Ч. Крейч) и лейкоз кур (В. Эллерман и О. Банг). В 1911 г. Ф. Раус привел неопровержимые доказательства наличия в вытяжке тканей саркомы кур онкогенного вируса, способного вызывать опухоль у здоровых птиц. Благодаря исследованиям X. Арагана и Э. Пашена (1911–1917 гг.) была при-

знана вирусная природа ветряной оспы. Одновременно с ними Т. Андерсон

и Дж. Гольдберг установили вирусную этиологию кори.

В 1915 г. Ф. Туортом были открыты вирусы бактерий. В 1917 г. независимо от него вирусы бактерий были открыты Ф. Д’Эрелем, который ввёл термин «бактериофаг».

Вторая волна открытий вирусов антропонозных болезней приходится на 30-е гг. прошлого века. В 1933 г. У. Смит, К. Эндрюс и П. Лейдлоу установили, что грипп вызывают не бактерии, а вирусы. К началу Второй мировой войны к вирусным болезням были причислены эпидемический паротит (К. Джонсон, Э. Гудпасчур, 1934 г.), японский летне-осенний комариный энцефалит (М. Хаяши, А.С. Смородинцев, 1934–1938 гг.), даль-

в 1937 г. Г. Финдли и Ф. Мак -Каллум, а подтвердили это в экспериментах на обезьянах и людях-добровольцах в 1943–1944 гг. Д. Камерон, Ф. МакКаллум и В. Хавенс.

Первый шаг в направлении описания молекулярной структуры вирусов был сделан в 1935 г., когда В. Стенли получил кристаллы вируса т а- бачной мозаики. Детально изучить тонкую структуру вирусов стало возможным в 50–60 гг. XX века после усовершенствования электронного микроскопа.

В 1938 г. М. Тэйлор получил ослабленную живую вакцину против жёлтой лихорадки. Разработанная вакцина оказалась такой надёжной и эффективной, что используется до сегодняшнего дня. Она спасла миллионы жизней и послужила моделью для разработки многих последующих вакцин. Кроме того, Тейлор усовершенствовал и ввёл в систему использование в качестве восприимчивых животных мышей. В начале 30-х гг. кроме мышей стали использовать также куриные эмбрионы, т.е. появился ещё один источник тканей, чувствительных к заражению вирусами и способных поддерживать их размножение.

По мере совершенствования экспериментальных систем развивались количественные методы исследований. Первый точный и быстрый метод подсчёта пораженных вирусом клеток был разработан в 1941 г., когда Г. Хирст продемонстрировал, что вирус гриппа вызывает агглютинацию эритроцитов.

Развитию вирусологии способствовала разработка метода культур клеток. В 1949 г. в ключевом эксперименте Дж. Ф. Эндерса, Т. Х. Уеллера и Ф. С. Роббинса было показано, что культуры клеток способны поддерживать рост вируса полиомиелита. Это открытие возвестило о приходе эры современной вирусологии и послужило толчком к ряду исследований, которые в конечном итоге привели к выделению многих вирусов, вызывающих серьёзные заболевания у человека. В 50-е и 60-е гг. ХХ века были вы-

делены некоторые энтеровирусы и респираторные вирусы, установлены причины большого числа болезней, вирусное происхождение которых до того момента лишь предполагали. Так, например, в 1953 г. М. Блумберг открыл вирус гепатита B и создал против него первую вакцину. В 1952 г. Р. Дюльбекко применил к вирусам животных метод бляшек.

Открытие бактериофагов было оценено лишь в конце 30-х гг., когда вирусы бактерий начали использовать в качестве удобной модели для изучения взаимодействия вирус-клетка в генетических и биохимических исследованиях. В 1939 г. Э. Эллис и М. Дельбрюк выдвинули концепцию «одноэтапного цикла роста вируса». Эта работа заложила основы для понимания характера репродукции вирусов, заключающейся в сборке отдельных компонентов.

Важные для молекулярной биологии открытия были сделаны при использовании в качестве объектов исследований вирусов животных. В 1970 г. Х. М. Темин и Д. Балтимор независимо друг от друга открыли у ретровирусов обратную транскриптазу, способную осуществлять синтез ДНК на матрице РНК. В 1976 г. Д. Бишоп и Х. Вармус обнаружили, что онкоген вируса саркомы Рауса присутствует также в геномах нормальных клеток животных и человека. В 1977 г. Р. Робертс и Ф. Шарп независимо друг от друга показали прерывистую структуру генов аденовирусов. В 1972 г. П. Берг создал первые рекомбинантные молекулы ДНК, построенные на основе кольцевого ДНК-генома вируса SV40 с включением генов фага λ и галактозного оперонаEscherichia coli . Эта работа дала начало технологии рекомбинантных ДНК. В 1977 г. стала известна первая полная нуклеотидная последовательность генома биологического объекта: Х. Э. Сэнгер с сотрудниками определили нуклеотидную последовательность генома фага ØX174. В 1990 г. была осуществлена первая успешная попытка применения генотерапии в клинической практике: ребёнку, страдающему тяжёлым комбинированным иммунодефицитом, заболеванием, связанным с дефектом гена аденозиндезаминидазы, была введена нормальная копия гена с использованием вектора, построенного на основе генома ретровируса.

В 50–60 гг. также проводились исследования по изучению нетипичных вирусных агентов. В 1957 г. Д. Гайдушек предположил, что болезнь куру вызывается одним из вирусов медленных инфекций. Однако только в 1982 г. была выявлена природа вирусов медленных инфекций («slow virus»), когда С. Прузинер продемонстрировал, что скрепи вызывается инфекционными белками, названными им прионами.

В 1967 г. Т. О. Дайнер открыл вироиды, инфекционные агенты, представляющие собой кольцевые молекулы РНК, вызывающие заболевания у растений.

В последующие годы список открытых вирусов продолжал пополняться. В 1981 г. выделен вирус лейкемии Т-лимфоцитов человека – пер-

вый вирус, для которого была достоверно установлена способность вызывать рак у человека.

ПРИРОДА И ПРОИСХОЖДЕНИЕ ВИРУСОВ

Представления о природе вирусов со времени их открытия претерпели значительные изменения.

Д.И. Ивановский и другие исследователи того времени подчеркивали два свойства вирусов, позволившие выделить их в отдельную группу живых организмов: фильтруемость и неспособность размножаться на исскуственных питательных средах. Позже выяснилось, что эти свойства не абсолютны, так как были обнаружены фильтрующиеся формы бактерий (L-формы) и микоплазмы, не растущие на искусственных питательных средах и по размерам приближавшиеся к наиболее крупным вирусам (вирус оспы, мимивирус, мегавирус, пандоравирус).

К уникальным свойствам вирусов относится их способ размножения, который резко отличается от способа размножения всех других клеток и организмов. Вирусы не растут, их размножение обозначается как дизъюнктивная репродукция, что подчеркивает разобщенность в пространстве и времени синтеза вирусных компонентов с последующей сборкой и формированием вирионов.

В связи с вышеизложенным не раз возникали дискуссии по поводу того, что же такое вирусы – живое или не живое, организмы или не организмы? Безусловно, вирусы обладают основными свойствами всех других

форм жизни – способностью размножаться, наследственностью, изменчивостью, приспособляемостью к условиям внешней среды. Они занимают определенную экологическую нишу, на них распространяются законы эволюции органического мира. К середине 40-х гг. ХХ века сложилось представление о вирусах как о наиболее примитивных микроорганизмах. Логическим развитием этих взглядов было введение термина «вирион», обозначавшего внеклеточный вирусный индивидуум. Однако с развитием исследований по молекулярной биологии вирусов стали накапливаться факты, противоречащие представлению о вирусах как организмах. Отсутствие собственной белок-синтезирующей системы, дизъюнктивный способ репродукции, интеграция с клеточным геномом, существование вирусных саттелитов и дефектных вирусов, феноменов множественной реактивации и комплементации – все это мало укладывается в представление о вирусах как организмах.

Все вирусы, включая саттелиты и дефектные вирусы, вироиды и прионы, имеют нечто общее, их объединяющее. Все они являются автономными генетическими структурами, способными функционировать и репродуцироваться в восприимчивых к ним клетках различных групп бактерий, грибов, растений и животных. Это наиболее полное определение, позволяющее очертить царство вирусов.

Согласно второй гипотезе, вирусы являются потомками древних, доклеточных форм жизни – протобионтов, предшествовавших появлению клеточных форм жизни, с которых и началась биологическая эволюция.

Похожие публикации