Новая школа - Образовательный портал

Понятие замкнутости множества вещественных чисел. Замыкания множеств. Замкнутые и открытые множества. Признаки делимости натуральных чисел

Определение: Множество A называется замкнутым относительно операции *, если результат применения этой операции к любым элементам множества A также является элементом множества A . (Если для любых a,b Î A , a *b Î A , то множество A замкнуто относительно операции *)

Для доказательства замкнутости множества относительно операции необходимо либо непосредственным перебором всех случаев убедиться в этом (пример 1б), либо провести рассуждение в общем виде (пример 2). Чтобы опровергнуть замкнутость, достаточно привести один пример, демонстрирующий нарушение замкнутости (пример 1а).

Пример 1 .

Пусть A = {0;1}.

а) В качестве операции * возьмем арифметическую операцию сложения (+). Исследуем множество A на замкнутость относительно операции сложения (+):

0 + 1 = 1 Î A ; 0 + 0 = 0 Î A ; 1 + 0 = 1Î A ; 1 + 1 = 2 Ï A .

Имеем, что в одном случае (1+1) результат применения операции (+) к элементам множества A не принадлежит множеству A . На основании этого делаем вывод о том, что множество A не является замкнутым относительно операции сложения.

б) Теперь в качестве операции * возьмем операцию умножения (×).

0×1 = 0 Î A ; 0×0 = 0 Î A ; 1×0 = 0 Î A ; 1×1 = 1 Î A .

Для любых элементов множества A результат применения операции умножения также является элементом множества A . Следовательно, A замкнуто относительно операции умножения.

Пример 2 .

Исследовать на замкнутость относительно четырех арифметических операций множество целых чисел, кратных 7.

Z 7 = {7n , n Î Z } – множество чисел, кратных семи.

Очевидно, что Z 7 – незамкнуто относительно операции деления, так как, например,

7 Î Z 7 , 14 Î Z 7 , но 7: 14 = ½ Ï Z 7 .

Докажем замкнутость множества Z 7 относительно операции сложения. Пусть m , k – произвольные целые числа, тогда 7m Î Z 7 и 7k Î Z 7 . Рассмотрим сумму 7m + 7 k = 7∙(m + k ).

Имеем m Î Z , k Î Z . Z – замкнуто относительно сложения Þ m + k = l – целое число, то есть l Î Z Þ 7l Î Z 7 .

Таким образом, для произвольных целых чисел m и k доказали, что (7m + 7 k) Î Z 7 . Следовательно, множество Z 7 замкнуто относительно сложения. Аналогично доказывается замкнутость относительно операций вычитания и умножения (проделайте это самостоятельно).


1.

а) множество четных чисел (иначе: множество целых чисел, делящихся на 2(Z 2));

б) множество отрицательных целых чисел (Z –);

в) A = {0;1};

г) C = {–1;0;1}.

2. Исследовать на замкнутость относительно арифметических операций сложения, вычитания, умножения и деления следующие множества:

а) множество нечетных чисел;

б) множество натуральных чисел, последняя цифра которых нуль;

в) B = {1};

г) D = {–1;1}.

3.

а) множество N натуральных чисел;

б) множество Q рациональных чисел;

в) D = {–1;1};

г) множество нечетных чисел.

4. Исследовать на замкнутость относительно операции возведения в степень следующие множества:

а) множество Z целых чисел;

б) множество R действительных чисел;

в) множество четных чисел;

г) C = {–1; 0; 1}.

5. Пусть множество G , состоящее только из рациональных чисел, замкнуто относительно сложения.

а) Укажите какие-либо три числа, содержащиеся во множестве G, если известно, что оно содержит число 4.

б) Докажите, что множество G содержит число 2, если оно содержит числа 5 и 12.

6. Пусть множество K , состоящее только из целых чисел, замкнуто относительно вычитания.

а) Укажите какие-либо три числа, содержащиеся во множестве K , если известно, что оно содержит число 5.

б) Докажите, что множество K содержит число 6, если оно содержит числа 7 и 3.

7. Приведите пример множества, состоящего из натуральных чисел и незамкнутого относительно операции:

а) сложения;

б) умножения.

8. Приведите пример множества, содержащего число 4 и замкнутого относительно операций:

а) сложения и вычитания;

Докажем теперь некоторые специальные свойства замкнутых и открытых множеств.

Теорема 1. Сумма конечного или счетного числа открытых множеств есть открытое множество. Произведение конечного числа открытых множеств есть открытое множество,

Рассмотрим сумму конечного или счетного числа открытых множеств:

Если , то Р принадлежит по крайней мере одному из Пусть Так как - открытое множество, то некоторая -окрестность Р также принадлежит Эта же -окрестность Р принадлежит и сумме g, откуда и следует, что g есть открытое множество. Рассмотрим теперь конечное произведение

и пусть Р принадлежит g. Докажем, как и выше, что и некоторая -окрестность Р принадлежит g. Раз Р принадлежит g, то Р принадлежит всем . Так как - открытые множества, то для любого существует некоторая -окрестность точки принадлежащая . Если число взять равным наименьшему из число которых конечно, то -окрестность точки Р будет принадлежать всем а следовательно, и g. Отметим, что нельзя утверждать, что произведение счетного числа открытых множеств есть открытое множество.

Теорема 2. Множество CF - открытое и множество СО - замкнутое.

Докажем первое утверждение. Пусть Р принадлежит CF. Надо доказать, что некоторая - окрестность Р принадлежит CF. Это следует из того, что, если бы в любой -окрестности Р находились точки F, точка Р, не принадлежащая по условию была бы предельной для F точкой и, в силу замкнутости должна была бы принадлежать что приводит к противоречию.

Теорема 3. Произведение конечного или счетного числа замкнутых множеств есть замкнутое множество. Сумма конечного числа замкнутых множеств есть замкнутое множество.

Докажем, например, что множество

замкнуто. Переходя к дополнительным множествам, можем написать

По теореме открытые множества, и, согласно теореме 1, множество тоже открытое, и тем самым дополнительное множество g замкнуто. Отметим, что сумма счетного числа замкнутых множеств может оказаться и незамкнутым множеством.

Теорема 4. Множество есть открытое множество и множество замкнутое.

Легко проверить следующие равенства:

Из них, в силу предыдущих теорем, следует теорема 4.

Мы будем говорить, что множество g покрыто системой М некоторых множеств, если всякая точка g входит по крайней мере в одно из множеств системы М.

Теорема 5 (Бореля). Если замкнутое ограниченное множество F покрыто бесконечной системой а открытых множеств О, то из этой бесконечной системы можно извлечь конечное число открытых множеств, которые также покрывают F.

Доказываем эту теорему от обратного. Положим, что никакое конечное число открытых множеств из системы а не покрывает и приведем это к противоречию. Раз F - ограниченное множество, то все точки F принадлежат некоторому конечному двумерному промежутку . Разобьем этот замкнутый промежуток на четыре равные части, деля промежутки пополам. Каждый из полученных четырех промежутков будем брать замкнутым. Те точки F, которые попадут на один из этих четырех замкнутых промежутков, будут, в силу теоремы 2, представлять собой замкнутое множество, и по крайней мере одно из этих замкнутых множеств не может быть покрыто конечным числом открытых множеств из системы а. Берем тот из указанных выше четырех замкнутых промежутков, где это обстоятельство имеет место. Этот промежуток опять делим на четыре равные части и рассуждаем так же, как и выше. Таким образом, получим систему вложенных промежутков из которых каждый следующий представляет собой четвертую часть предыдущего, и имеет место следующее обстоятельство: множество точек F, принадлежащих при любом k не может быть покрыто конечным числом открытых множеств из системы а. При беспредельном возрастании k промежутки будут беспредельно сжиматься к некоторой точке Р, которая принадлежит всем промежуткам . Поскольку при любом k содержат бесчисленное множество точек точка Р является предельной точкой для а потому и принадлежит F, ибо F - замкнутое множество. Тем самым точка Р покрывается некоторым открытым множеством принадлежащим к системе а. Некоторая -окрестность точки Р будет также принадлежать открытому множеству О. При достаточно больших значениях k промежутки Д попадут внутрь указанной выше -окрестности точки Р. Тем самым эти будут целиком покрыты только одним открытым множеством O системы а, а это противоречит тому, что точки принадлежащие при любом k не могут быть покрыты конечным числом открытых множеств, принадлежащих а. Тем самым теорема доказана.

Теорема 6. Открытое множество может быть представлено как сумма счетного числа полуоткрытых промежутков попарно без общих точек.

Напомним, что полуоткрытым промежутком на плоскости мы называем конечный промежуток, определяемый неравенствами вида .

Нанесем на плоскости сетку квадратов со сторонами, параллельными осям, и с длиной стороны, равной единице. Множество этих квадратов есть счетное множество. Выберем из этих квадратов те квадраты, все точки которых принадлежат заданному открытому множеству О. Число таких квадратов может быть конечным или счетным, а может быть таких квадратов вовсе не будет. Каждый из оставшихся квадратов сетки разделим на четыре одинаковых квадрата и из вновь полученных квадратов выберем опять те, все точки которых принадлежат О. Каждый из оставшихся квадратов опять делим на четыре равные части и отбираем те квадраты, все точки которых принадлежат О, и т. д. Покажем, что всякая точка Р множества О попадет в один из выбранных квадратов, все точки которого принадлежат О. Действительно, пусть d - положительное расстояние от Р до границы О. Когда мы дойдем до квадратов, диагональ которых меньше , то можно, очевидно, утверждать, что точка Р уже попала в квадрат, все томки которого принадлежат О. Если выбранные квадраты считать полуоткрытыми, то они не будут попарно иметь общих точек, и теорема доказана. Число отобранных квадратов будет обязательно счетным, так как конечная сумма полуоткрытых промежутков не есть, очевидно, открытое множество. Обозначая через ДЛ те полуоткрытые квадраты, которые мы получили в результате указанного выше построения, можем написать

В курсе математического анализа на первом курсе ВУЗов встречается много непонятного и непривычного. Одна из первых таких «новых» тем — это открытые и замкнутые множества . Постараемся дать пояснения по данной тематике.

Перед тем, как приступить к постановке определений и задач, напомним значение используемых обозначений и кванторов :
∈ — принадлежит
∅ — пустое множество
Ε — множество действительных чисел
х* — закреплённая точка
А* — множество граничных точек
: — такое, что
⇒ — следовательно
∀ — для каждого
∃ — существует
U ε (х) — окрестность х по ε
Uº ε (х) — проколотая окрестность х по ε

Итак,
Определение 1: Множество М ∈ Ε называется открытым, если для любого у ∈ М найдётся такое ε > 0, что окрестность y по ε строго меньше М
С помощью кванторов определение запишется следующим образом:
М ∈ Ε — открытое, если ∀ у∈М ∃ ε>0: U ε (y) < M

Простым языком — открытое множество состоит из внутренних точек. Примерами открытого множества являются пустое множество, прямая, интервал (а, b)

Определение 2: Точка x* ∈ E называется граничной точкой множества М, если в любой окрестности точки х содержатся точки как из множества М, так и из его дополнения.
Теперь с помощью кванторов:
х*∈ E — граничная точка, если ∀U ε (x) ∩ М ≠ ∅ и ∀U ε (x) ∩ Е\М

Определение 3: Множество называется замкнутым, если ему принадлежат все граничные точки. Пример — отрезок

Стоит отметить, что существуют множества, которые одновременно и открытые, и замкнутые. Это, например, всё множество действительных чисел и пустое множество (позднее будет доказано, что это 2 возможных и единственных случая).

Докажем несколько теорем, связанных с открытым и замкнутым множествами.

Теорема 1: Пусть множество А — открытое. Тогда дополнение к множеству А является замкнутым множеством.

В = Е\А

Предположим, что В — незамкнутое. Тогда существует граничная точка х*, которая не принадлежит В, а значит — принадлежит А. По определению граничной точки окрестность х* имеет пересечение как с В, так и с А. Однако с другой стороны х* является внутренней точкой открытого множества А, поэтому вся окрестность точки х* лежит в А. Отсюда делаем вывод, что множества А и В пересекаются не по пустому множеству. Такого быть не может, поэтому наше предположение неверно и В является замкнутым множеством, ч. т. д.
В кванторах доказательство можно записать короче:
Предположим, что В — незамкнутое, тогда:
(1) ∃ х∈А*:х∈A ⇒ ∀U ε (x) ∩ В ≠ ∅ (определение граничной точки)
(2) ∃ х∈А*:х∈A ⇒ ∀U ε (x) ⊂ А ≠ ∅ (определение открытоко множества)
Из (1) и (2) ⇒ А ∩ В ≠ ∅. Но А ∩ В = А ∩ Е\А = 0. Противоречие. В — замкнутое, ч. т. д.

Теорема 2: Пусть множество А — замкнутое. Тогда дополнение к множеству А является открытым множеством.
Доказательство: Обозначим дополнение множества А как множество В:
В = Е\А
Доказывать будем от противного.
Предположим, что В — замкнутое множество. Тогда любая граничная точка лежит в В. Но так как А — также замкнутое множество, то все граничные точки принадлежат и ему. Однако точка не может одновременно принадлежать множеству и его дополнению. Противоречие. В — открытое множество, ч. т. д.
В кванторах это выглядеть будет следующим образом:
Предположим, что В — замкнутое, тогда:
(1) ∀ х∈А*:х∈A (из условия)
(1) ∀ х∈А*:х∈В (из предположения)
Из (1) и (2) ⇒ А ∩ В ≠ ∅. Но А ∩ В = А ∩ Е\А = 0. Противоречие. В — открытое, ч. т. д.

Теорема 3: Пусть множество А — замкнутое и открытое. Тогда А = Е или А = ∅
Доказательство: Начнём записывать подробно, но сразу использую кванторы.
Предположим, что множество С — замкнутое и открытое, причём С ≠ ∅ и С ≠ Е. Тогда очевидно, что С ⊆ Е.
(1) ∃ х∈А*:х∈С ⇒ ∀U ε (x) ∩ Е\С ≠ ∅ (определение граничной точки, которая принадлежит С)
(2) ∃ х∈А*:х∈A ⇒ ∀U ε (x) ⊂ В (определение открытого множества С)
Из (1) и (2) следует, что Е\С ∩ С ≠ ∅, но это неверно. Противоречие. С не может быть одновременно и открытым, и замкнутым, ч. т. д.

Математический анализ — это фундаментальная математика, сложная и непривычная для нас. Но надеюсь, что-то стало понятнее после прочтения статьи. В добрый путь!

Posted by |

Открытые и замкнутые множества

Приложение 1 . Открытые и замкнутые множества

Множество M на прямой называется открытым , если каждая его точка сожержится в этом множестве вместе с некоторым интервалом. Замкнутым называется множество, содержащее все свои предельные точки (т. е. такие, что любой интервал, содержащий эту точку, пересекается со множеством еще хотя бы по одной точке). Например, отрезок является замкнутым множеством, но не является открытым, а интервал, наоборот, является открытым множеством, но не является замкнутым. Бывают множества, которые не являются ни открытыми, ни замкнутыми (например, полуинтервал). Существуют два множества, которые одновременно и замкнутые, и открытые – это пустое и все Z (докажите, что других нет). Легко видеть, что если M открыто, то [` M ] (или Z \ M – дополнение к множеству M до Z ) замкнуто. Действительно, если [` M ] не замкнуто, то оно не содержит какую-то свою предельную точку m . Но тогда m О M , причем каждый интервал, содержащий m , пересекается с множеством [` M ], т. е. имеет точку, не лежащую в M , а это противоречит тому, что M – открытое. Аналогично, тоже прямо из определения, доказывается, что если M замкнуто, то [` M ] открыто (проверьте!).

Теперь докажем следующую важную теорему.

Теорема. Любое открытое множество M можно представить в виде объединения интервалов с рациональными концами (т. е. с концами в рациональных точках).

Доказательство . Рассмотрим объединение U всех интервалов с рациональными концами, являющихся подмножествами нашего множества. Докажем, что это объединение совпадает со всем множеством. Действительно, если m – какая-то точка из M , то существует интервал (m 1 , m 2) М M , содержащий m (это следует из того, что M – открытое). На любом интервале можно найти рациональную точку. Пусть на (m 1 , m ) – это m 3 , на (m , m 2) – это m 4 . Тогда точка m покрыта объединением U , а именно, интервалом (m 3 , m 4). Таким образом, мы доказали, что каждая точка m из M покрыта объединением U . Кроме того, как очевидно следует из построения U , никакая точка, не содержащаяся в M , не покрыта U . Значит, U и M совпадают.

Важным следствием из этой теоремы является тот факт, что любое открытое множество есть счетное объединение интервалов.

Нигде не~плотные множества и~множества меры~ноль. Канторово множество>

Приложение 2 . Нигде не плотные множества и множества меры ноль. Канторово множество

Множество A называется нигде не плотным , если для любых различных точек a и b найдется отрезок [c , d ] М [a , b ], не пересекающийся с A . Например, множество точек последовательности a n = [ 1/(n )] является нигде не плотным, а множество рациональных чисел – нет.

Теорема Бэра. Отрезок нельзя представить в виде счетного объединения нигде не плотных множеств.

Доказательство . Предположим, что существует последовательность A k нигде не плотных множеств, таких что И i A i = [a , b ]. Построим следующую последовательность отрезков. Пусть I 1 – какой-нибудь отрезок, вложенный в [a , b ] и не пересекающийся с A 1 . По определению нигде не плотного множества на отрезке I 1 найдется отрезок, не пересекающийся с множеством A 2 . Назовем его I 2 . Далее, на отрезке I 2 возьмем аналогичным образом отрезок I 3 , не пересекающийся с A 3 , и т. д. У последовательности I k вложенных отрезков есть общая точка (это одно из основных свойств действительных чисел). Эта точка по построению не лежит ни в одном из множеств A k , значит, эти множества не покрывают весь отрезок [a , b ].

Назовем множество M имеющим меру ноль , если для любого положительного e найдется последовательность I k интервалов с суммарной длиной меньше e , покрывающая M . Очевидно, что любое счетное множество имеет меру ноль. Однако бывают и несчетные множества, имеющие меру ноль. Построим одно такое, очень известное, называемое канторовым.

Рис. 11

Возьмем отрезок . Поделим его на три равные части. Средний отрезок выкинем (рис. 11, а ). Останется два отрезка суммарной длины [ 2/3]. С каждым из них проделаем точно такую же операцию (рис. 11, б ). Останется четыре отрезка суммарной длины [ 4/9] = ([ 2/3]) \ B 2 . Продолжая так далее (рис. 11, в е ) до бесконечности, получаем множество, которое имеет меру меньше любой наперед заданной положительной, т. е. меру ноль. Можно установить взаимно однозначное соответствие между точками этого множества и бесконечными последовательностями нулей и единиц. Если при первом "выкидывании" наша точка попала в правый отрезок, поставим в начале последовательности 1, если в левый – 0 (рис. 11, а ). Далее, после первого "выкидывания", получаем маленькую копию большого отрезка, с которой поступаем точно так же: если наша точка после выкидывания попала в правый отрезок, поставим 1, если в левый – 0, и т. д. (проверьте взаимную однозначность), рис. 11, б , в . Поскольку множество последовательностей нулей и единиц имеет мощность континуум, канторово множество также имеет мощность континуум. Кроме того, несложно доказать, что оно нигде не плотно. Однако неверно, что оно имеет строгую меру ноль (см. определение строгой меры). Идея доказательства этого факта в следующем: возьмем последовательность a n , очень быстро стремящуюся к нулю. Для этого подойдет, например, последовательность a n = [ 1/(2 2 n )]. После чего докажем, что этой последовательностью нельзя покрыть канторово множество (проделайте это!).

Приложение 3 . Задачи

Операции над множествами

Множества A и B называются равными , если каждый элемент множества A принадлежит множеству B , и наоборот. Обозначение: A = B .

Множество A называется подмножеством множества B , если каждый элемент множества A принадлежит множеству B . Обозначение: A М B .

1. Для каждых двух из следующих множеств указать, является ли одно из них подмножеством другого:

{1}, {1,2}, {1,2,3}, {{1},2,3}, {{1,2},3}, {3,2,1}, {{2,1}}.

2. Докажите, что множество A тогда и только тогда является подмножеством множества B , когда каждый элемент, не принадлежащий B , не принадлежит A .

3. Докажите, что для произвольных множеств A , B и C

а) A М A ; б) если A М B и B М C , то A М C ;

в) A = B , если и только если A М B и B М A .

Множество называется пустым , если оно не содержит ни одного элемента. Обозначение: Ж .

4. Сколько элементов у каждого из следующих множеств:

Ж , {1}, {1,2}, {1,2,3}, {{1},2,3}, {{1,2},3}, {Ж }, {{2,1}}?

5. Сколько подмножеств у множества из трех элементов?

6. Может ли у множества быть ровно а) 0; б*) 7; в) 16 подмножеств?

Объединением множеств A и B x , что x О A или x О B . Обозначение: A И B .

Пересечением множеств A и B называется множество, состоящее из таких x , что x О A и x О B . Обозначение: A З B .

Разностью множеств A и B называется множество, состоящее из таких x , что x О A и x П B . Обозначение: A \ B .

7. Даны множества A = {1,3,7,137}, B = {3,7,23}, C = {0,1,3, 23}, D = {0,7,23,1998}. Найдите множества:

а) A И B ; б) A З B ; в) (A З B D ;
г) C З (D З B ); д) (A И B )З (C И D ); е) (A И (B З C ))З D ;
ж) (C З A )И ((A И (C З D ))З B ); з) (A И B ) \ (C З D ); и) A \ (B \ (C \ D ));
к) ((A \ (B И D )) \ C B .

8. Пусть A – множество четных чисел, а B – множество чисел, делящихся на 3. Найдите A З B .

9. Докажите, что для любых множеств A , B , C

а) A И B = B И A , A З B = B З A ;

б) A И (B И C ) = (A И B C , A З (B З C ) = (A З B C ;

в) A З (B И C ) = (A З B )И (A З C ), A И (B З C ) = (A И B )З (A И C );

г) A \ (B И C ) = (A \ B )З (A \ C ), A \ (B З C ) = (A \ B )И (A \ C ).

10. Верно ли, что для любых множеств A , B , C

а) A З Ж = Ж , A И Ж = A ; б) A И A = A , A З A = A ; в) A З B = A Ы A М B ;
г) (A \ B B = A ; 7 д) A \ (A \ B ) = A З B ; е) A \ (B \ C ) = (A \ B )И (A З C );
ж) (A \ B )И (B \ A ) = A И B ?

Отображения множеств

Если каждому элементу x множества X поставлен в соотвествие ровно один элемент f (x ) множества Y , то говорят, что задано отображение f из множества X в множество Y . При этом, если f (x ) = y , то элемент y называется образом элемента x при отображении f , а элемент x называется прообразом элемента y при отображении f . Обозначение: f : X ® Y .

11. Нарисуйте всевозможные отображения из множества {7,8,9} в множество {0,1}.

Пусть f : X ® Y , y О Y , A М X , B М Y . Полным прообразом элемента y при отображении f называется множество {x О X | f (x ) = y }. Обозначение: f - 1 (y ). Образом множества A М X при отображении f называется множество {f (x ) | x О A }. Обозначение: f (A ). Прообразом множества B М Y называется множество {x О X | f (x ) О B }. Обозначение: f - 1 (B ).

12. Для отображения f : {0,1,3,4} ® {2,5,7,18}, заданного картинкой, найдите f ({0,3}), f ({1,3,4}), f - 1 (2), f - 1 ({2,5}), f - 1 ({5,18}).

а) б) в)

13. Пусть f : X ® Y , A 1 , A 2 М X , B 1 , B 2 М Y . Всегда ли верно, что

а) f (X ) = Y ;

б) f - 1 (Y ) = X ;

в) f (A 1 И A 2) = f (A 1)И f (A 2);

г) f (A 1 З A 2) = f (A 1)З f (A 2);

д) f - 1 (B 1 И B 2) = f - 1 (B 1)И f - 1 (B 2);

е) f - 1 (B 1 З B 2) = f - 1 (B 1)З f - 1 (B 2);

ж) если f (A 1) М f (A 2), то A 1 М A 2 ;

з) если f - 1 (B 1) М f - 1 (B 2), то B 1 М B 2 ?

Композицией отображений f : X ® Y и g : Y ® Z называется отображение, сопоставляющее элементу x множества X элемент g (f (x )) множества Z . Обозначение: g ° f .

14. Докажите, что для произвольных отображений f : X ® Y , g : Y ® Z и h : Z ® W выполняется следующее: h ° (g ° f ) = (h ° g f .

15. Пусть f : {1,2,3,5} ® {0,1,2}, g : {0,1,2} ® {3,7,37,137}, h : {3,7,37,137} ® {1,2,3,5}– отображения, показанные на рисунке:

f : g : h :

Нарисуйте картинки для следующих отображений:

а) g ° f ; б) h ° g ; в) f ° h ° g ; г) g ° h ° f .

Отображение f : X ® Y называется биективным , если для каждого y О Y найдется ровно один x О X такой, что f (x ) = y .

16. Пусть f : X ® Y , g : Y ® Z . Верно ли, что если f и g биективны, то и g ° f биективно?

17. Пусть f : {1,2,3} ® {1,2,3}, g : {1,2,3} ® {1,2,3}, – отображения, изображенные на рисунке:

18. Про каждые два из следующих множеств выясните, существует ли биекция из первого во второе (надлежит считать, что ноль – натуральное число):

а) множество натуральных чисел;

б) множество четных натуральных чисел;

в) множество натуральных чисел без числа 3.

Метрическим пространством называется множетсво X с заданной метрикой r : X ×X ® Z

1) " x ,y О X r (x ,y ) і 0, причем r (x ,y ) = 0, если и только если x = y (неотрицательность ); 2) " x ,y О X r (x ,y ) = r (y ,x ) (симметричность ); 3) " x ,y ,z О X r (x ,y ) + r (y ,z ) і r (x ,z ) (неравенство треугольника ). 19 19. X

а) X = Z , r (x ,y ) = | x - y | ;

б) X = Z 2 , r 2 ((x 1 ,y 1),(x 2 ,y 2)) = Ц {(x 1 - x 2) 2 + (y 1 - y 2) 2 };

в) X = C [a ,b a ,b ] функций,

где D

Открытым (соответственно, замкнутым ) шаром радиуса r в пространстве X с центром в точке x называется множество U r (x ) = {y О x : r (x ,y ) < r } (соответственно, B r (x ) = {y О X : r (x ,y ) Ј r }).

Внутренней точкой множества U М X U

открытым окрестностью этой точки.

Предельной точкой множества F М X F .

замкнутым

20. Докажите, что

21. Докажите, что

б) объединение множества A замыкание A

Отображение f : X ® Y называется непрерывным

22.

23. Докажите, что

F (x ) = inf y О F r (x ,y

F .

24. Пусть f : X ® Y – . Верно ли, что обратное к нему непрерывно?

Непрерывное взаимно однозначное отображение f : X ® Y гомеоморфизмом . Пространства X , Y гомеоморфными .

25.

26. Для каких пар X , Y f : X ® Y , которое не склеивает точки (т. е. f (x ) № f (y ) при x y вложениями )?

27*. локальным гомеоморфизмом (т. е. у каждой точки x плоскости и f (x ) тора существуют такие окрестности U и V , что f гомеоморфно отображает U на V ).

Метрические пространства и непрерывные отображения

Метрическим пространством называется множетсво X с заданной метрикой r : X ×X ® Z , удовлетворяющее следующим аксиомам:

1) " x ,y О X r (x ,y ) і 0, причем r (x ,y ) = 0, если и только если x = y (неотрицательность ); 2) " x ,y О X r (x ,y ) = r (y ,x ) (симметричность ); 3) " x ,y ,z О X r (x ,y ) + r (y ,z ) і r (x ,z ) (неравенство треугольника ). 28. Докажите, что следующие пары (X ,r ) являются метрическими пространствами:

а) X = Z , r (x ,y ) = | x - y | ;

б) X = Z 2 , r 2 ((x 1 ,y 1),(x 2 ,y 2)) = Ц {(x 1 - x 2) 2 + (y 1 - y 2) 2 };

в) X = C [a ,b ] – множество непрерывных на [a ,b ] функций,

где D – круг единичного радиуса с центром в начале координат.

Открытым (соответственно, замкнутым ) шаром радиуса r в пространстве X с центром в точке x называется множество U r (x ) = {y О x : r (x ,y ) < r } (соответственно, B r (x ) = {y О X : r (x ,y ) Ј r }).

Внутренней точкой множества U М X называется такая точка, которая содержится в U вместе с некоторым шаром ненулевого радиуса.

Множество, все точки которого внутренние, называется открытым . Открытое множество, содержащее данную точку, называется окрестностью этой точки.

Предельной точкой множества F М X называется такая точка, в любой окрестности которой содержится бесконечно много точек множества F .

Множество, которое содержит все свои предельные точки, называется замкнутым (сравните это определение с тем, которое было дано в приложении 1).

29. Докажите, что

а) множество открыто тогда и только тогда, когда его дополнение замкнуто;

б) конечное объединение и счетное пересечение замкнутых множеств замкнуто;

в) счетное объединение и конечное пересечение открытых множеств открыто.

30. Докажите, что

а) множество предельных точек любого множества является замкнутым множеством;

б) объединение множества A и множества его предельных точек ( замыкание A ) является замкнутым множеством.

Отображение f : X ® Y называется непрерывным , если прообраз каждого открытого множества открыт.

31. Докажите, что это определение согласуется с определением непрерывности функций на прямой.

32. Докажите, что

а) расстояние до множества r F (x ) = inf y О F r (x ,y ) является непрерывной функцией;

б) множество нулей функции пункта а) совпадает с замыканием F .

33. Пусть f : X ® Y

Непрерывное взаимно однозначное отображение f : X ® Y , обратное к которому также непрерывно, называется гомеоморфизмом . Пространства X , Y , для которых такое отображение существует, называются гомеоморфными .

34. Для каждой пары из следующих множеств установите, гомеоморфны ли они:

35. Для каких пар X , Y пространств из предыдущей задачи существует непрерывное отображение f : X ® Y , которое не склеивает точки (т. е. f (x ) № f (y ) при x y – такие отображения называют вложениями )?

36*. Придумайте непрерывное отображение плоскости на тор, которое было бы локальным гомеоморфизмом (т. е. у каждой точки x плоскости и f (x ) тора существуют такие окрестности U и V , что f гомеоморфно отображает U на V ).

Полнота. Теорема Бэра

Пусть X – метрическое пространство. Последовательность x n его элементов называется фундаментальной , если

" e > 0 $ n " k ,m > n r (x k ,x m ) < e .

37. Докажите, что сходящаяся последовательность фундаментальна. Верно ли обратное утверждение?

Метрическое пространство называется полным , если всякая фундаментальная последовательность в нем сходится.

38. Верно ли, что пространство, гомеоморфное полному, полно?

39. Докажите, что замкнутое подпространство полного пространства само полно; полное подпространство произвольного пространства замкнуто в нем.

40. Докажите, что в полном метрическом пространстве последовательность вложенных замкнутых шаров с радиусами, стремящимися к нулю, имеет общий элемент.

41. Можно ли в предыдущей задаче убрать условие полноты пространства или стремления к нулю радиусов шаров?

Отображение f метрического пространства X в себя называется сжимающим , если

$ c (0 Ј c < 1): " x ,y О X r (f (x ),f (y )) < c r (x ,y ).

42. Докажите, что сжимающее отображение непрерывно.

43. а) Докажите, что сжимающее отображение полного метрического пространства в себя имеет ровно одну неподвижную точку.

б) На карту России масштаба 1:5 000 000 положили карту России масштаба 1:20 000 000. Докажите, что найдется точка, изображения которой на обеих картах совпадут.

44*. Существует ли неполное метрическое пространство, в котором верно утверждение задачи , а?

Подмножество метрического пространства называется всюду плотным , если его замыкание совпадает со всем пространством; нигде не плотным – если его замыкание не имеет непустых открытых подмножеств (сравните это определение с тем, которое было дано в приложениие 2).

45. а) Пусть a , b , a , b О Z и a < a < b < b . Докажите, что множество непрерывных функций на [a ,b ], монотонных на , нигде не плотно в пространстве всех непрерывных функций на [a ,b ] c равномерной метрикой.

б) Пусть a , b , c , e О Z и a < b , c > 0, e > 0. Тогда множество непрерывных функций на [a ,b ], таких что

$ x О [a ,b ]: " y (0 < | x - y | < e ) Ю | f (x ) - f (y )| | x - y |
Ј c ,
нигде не плотно в пространстве всех непрерывных функций на [a ,b ] c равномерной метрикой.

46. (Обобщенная теорема Бэра .) Докажите, что полное метрическое пространство нельзя представить в виде объединения счетного числа нигде не плотных множеств.

47. Докажите, что множество непрерывных, не монотонных ни на каком непустом интервале и нигде не дифференцируемых функций, определенных на отрезке , всюду плотно в пространстве всех непрерывных функций на с равномерной метрикой.

48*. Пусть f – дифференцируемая функция на отрезке . Докажите, что ее производная непрерывна на всюду плотном множестве точек. Это определение лебеговой меры ноль. Если счетное число интервалов заменить на конечное, то получится определение жордановой меры ноль.

Счетное множество- есть бесконечное множество элементы которого можно пронумеровать натуральными числами, или это множество, равномощное множеству натуральных чисел.

Иногда счётными называются множества равномощные любому подмножеству множества натуральных чисел, то есть все конечные множества тоже считаются счётными.

Счётное множество является «наименьшим» бесконечным множеством, то есть в любом бесконечном множестве найдётся счётное подмножество.

Свойства:

1.Любое подмножество счётного множества не более чем счётно.

2.Объединение конечного или счётного числа счётных множеств счётно.

3.Прямое произведение конечного числа счётных множеств счётно.

4.Множество всех конечных подмножеств счётного множества счётно.

5.Множество всех подмножеств счётного множества континуально и, в частности, не является счётным.

Примеры счетных множеств:

Простые числа Натуральные числа, Целые числа, Рациональные числа, Алгебраические числа, Кольцо периодов, Вычислимые числа, Арифметические числа.

Теория вещественных чисел.

(Вещественные = действительные – памятка для нас, пацаны.)

Множество R содержит рациональные и иррациональные числа.

Действительные числа, не являющиеся рациональными, называются иррациональными

Теорема: Не существует рационального числа, квадрат которого равен числу 2

Рациональные числа: ½, 1/3, 0.5, 0.333.

Иррациональные числа: корень из 2=1,4142356… , π=3.1415926…

Множество R действительных чисел обладает следующими свойствами:

1. Оно упорядоченное: для любых двух различных чисел a и b имеет место одно из двух соотношений a либо a>b

2. Множество R плотное: между двумя различными числами a и b содержится бесконечное множество действительных чисел х, т.е чисел, удовлетворяющих неравенству а

Там еще 3-е свойство, но оно огромное, сорри

Ограниченные множества. Свойства верхних и нижних границ.

Ограниченное множество - множество, которое в определенном смысле имеет конечный размер.

ограниченным сверху , если существует число , такое что все элементы не превосходят :

Множество вещественных чисел называется ограниченным снизу , если существует число ,

такое что все элементы не меньше :

Множество , ограниченное сверху и снизу, называется ограниченным .

Множество , не являющееся ограниченным, называется неограниченным . Как следует из определения, множество не ограничено тогда и только тогда, когда оно не ограничено сверху или не ограничено снизу .

Числовая последовательность. Предел последовательности. Лемма о двух милиционерах.

Числовая последовательность - это последовательность элементов числового пространства.

Пусть - это либо множество вещественных чисел , либо множество комплексных чисел . Тогда последовательность элементов множества называется числовой последовательностью.

Пример.

Функция является бесконечной последовательностью рациональных чисел. Элементы этой последовательности начиная с первого имеют вид .

Предел последовательности - это объект, к которому члены последовательности приближаются с ростом номера. В частности, для числовых последовательностей предел - это число, в любой окрестности которого лежат все члены последовательности начиная с некоторого.

Теорема о двух милиционерах…

Если функция такая, что для всех в некоторой окрестности точки , причем функции и имеют одинаковый предел при , то существует предел функции при , равный этому же значению, то есть

Похожие публикации